【机器学习】Lasso回归:稀疏建模与特征选择的艺术


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • Lasso回归:稀疏建模与特征选择的艺术
    • 引言
    • 一、Lasso回归简介
      • 1.1 基本概念
      • 1.2 数学表达式
    • 二、算法与实现
      • 2.1 解决方案
      • 2.2 Python实现示例
    • 三、Lasso回归的优势与特性
      • 3.1 特征选择
      • 3.2 处理多重共线性
      • 3.3 收缩效应
    • 四、超参数调整与模型选择
    • 五、实际应用策略与注意事项
      • 5.1 数据预处理
      • 5.2 解释与可解释性
      • 5.3 高维数据处理
    • 六、结论与展望

Lasso回归:稀疏建模与特征选择的艺术

在这里插入图片描述

引言

在高维数据的海洋中,如何有效识别并利用关键特征成为数据分析和机器学习中的重要挑战。Lasso回归(Least Absolute Shrinkage and Selection Operator),作为一种引入了L1正则化的线性模型,不仅能够实现特征的自动选择,还能有效处理多重共线性问题,为复杂数据分析提供了强有力的工具。本文将深入探讨Lasso回归的理论基础、算法实现、优势特点及其在实际应用中的策略和技巧,旨在为读者提供一个全面而深入的理解。

一、Lasso回归简介

1.1 基本概念

Lasso回归由Robert Tibshirani于1996年提出,是线性回归的一种正则化形式。它在标准线性回归损失函数的基础上,加入了L1范数惩罚项,旨在约束模型参数的绝对值大小,从而促使某些参数直接被“压缩”至零,实现特征的选择性稀疏化。

1.2 数学表达式

Lasso回归的目标函数可表述为:
min ⁡ β 0 , β ( 1 2 n ∑ i = 1 n ( y i − ( β 0 + β 1 x i 1 + . . . + β p x i p ) ) 2 + λ ∑ j = 1 p ∣ β j ∣ ) \min_{\beta_0, \beta} \left( \frac{1}{2n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1x_{i1} + ... + \beta_px_{ip}))^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right) β0,βmin(2n1i=1n(yi(β0+β1xi1+...+βpxip))2+λj=1pβj)
其中,第一部分是标准的平方损失函数,用于衡量模型预测值与真实值之间的差距;第二部分是L1正则化项, λ \lambda λ是正则化强度参数,控制正则化的强度。

二、算法与实现

2.1 解决方案

Lasso回归的求解通常不具有闭式解,常见的求解方法包括:

  • 坐标下降法(Coordinate Descent):逐个更新每个参数,直到收敛。
    在这里插入图片描述

  • 最小角回归(LARS, Least Angle Regression):一种迭代算法,能同时处理Lasso和Ridge回归问题。
    在这里插入图片描述

  • 梯度下降法配合软阈值操作也可以实现Lasso回归的求解。
    在这里插入图片描述

2.2 Python实现示例

使用scikit-learn库中的Lasso类可以轻松实现Lasso回归:

from sklearn.linear_model import Lasso
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# 生成模拟数据
X, y = make_regression(n_samples=100, n_features=10, noise=0.1)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化Lasso回归模型
lasso = Lasso(alpha=0.1)

# 训练模型
lasso.fit(X_train, y_train)

# 预测
predictions = lasso.predict(X_test)

三、Lasso回归的优势与特性

3.1 特征选择

Lasso回归最显著的优势在于其自然地实现了特征选择。通过强制某些系数为零,模型能够识别出对预测最重要的特征子集,这对于理解和解释模型特别有用,尤其是在高维数据场景下。

3.2 处理多重共线性

Lasso回归对于高度相关的特征具有较好的鲁棒性,能够在一定程度上缓解多重共线性问题,因为L1正则化倾向于选择一个特征而将其他相关特征的系数压低至零。

3.3 收缩效应

即使参数没有被完全压缩至零,Lasso也会对所有参数进行某种程度的“收缩”,这有助于防止过拟合,提高模型的泛化能力。

四、超参数调整与模型选择

4.1 λ \lambda λ的选择

  • 交叉验证:是最常用的方法,通过在不同子集上评估模型性能,找到最优的(\lambda)。
  • 信息准则(如AIC、BIC):在某些情况下也可作为选择正则化强度的依据。

4.2 与Ridge回归的对比

虽然Ridge回归也采用正则化,但它使用的是L2范数,倾向于保留所有特征但减小它们的系数。选择Lasso还是Ridge取决于是否需要进行特征选择,以及数据的特性。

五、实际应用策略与注意事项

5.1 数据预处理

  • 标准化/归一化:Lasso回归对特征尺度敏感,预处理是必要的。
  • 缺失值处理:应合理填充或删除含有大量缺失值的特征。

5.2 解释与可解释性

Lasso回归模型的稀疏性使其更易于解释,但需要注意的是,特征选择结果可能依赖于(\lambda)的选择,解释时需谨慎。

5.3 高维数据处理

在极高维度的情况下,Lasso可能遇到计算挑战,考虑使用迭代算法或分布式计算资源。

六、结论与展望

Lasso回归以其独特的特征选择能力和对多重共线性的良好处理,在众多领域展现出广泛的应用价值。随着计算技术的进步和数据科学的深入发展,Lasso回归及其变体(如Elastic Net回归)将持续优化,为复杂数据分析和决策支持提供更为强大的工具。对于研究人员和实践者来说,深入理解Lasso回归的工作原理及其在特定情境下的适用性和限制,将是提升数据挖掘和预测能力的关键。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/729360.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python基础篇(4):range语句

1 功能介绍 range语句的功能是获得一个数字序列(可迭代类型的一种) 2 语法 语法1: range(num) 获取一个从0开始,到num结束的数字序列(不含num本身) 如range(5)取得的数据是:[0, 1, 2, 3, 4…

等保2.0对云计算有哪些特定的安全要求?

等保2.0针对云计算环境设定了特定的安全要求,这些要求是在原有的安全通用要求基础上的扩展,旨在确保云服务的安全性和合规性。以下是一些关键的云计算安全扩展要求: 1. 基础设施的位置:等保2.0要求云计算基础设施位于中国境内&am…

LeetCode刷题之HOT100之LRU缓存

2024/6/21 酷暑难耐,离开空调我将不知道能否《活着》,昨天跑步感觉全身的热无法排出去,出门那种热浪一阵一阵打过来,一点风都舍不得给我。早早的来到实验室,也没多早,九点哈哈,做题啦&#xff0…

GPT-4o与GPT-4的价格对比

截图来源于微软Azure的OpenAI服务。 GPT-4o比GPT-4的价格降低是肉眼可见,可惜计价是美元单位,较国内的价格而言还是比较贵,拿来做Demo演示可以,商用的话,还要仔细考量考量。 国内的地板价已经来到了0.5元/百万Token的…

canvas绘制红绿灯路口(二)

系列文章 canvas绘制红绿灯路口(一) 无图不欢,先上图 优化项: 一:加入人行道红绿信号 二:加入专用车道标识(无方向标识时采用专用车道标识) 三:东南西北四项路口优化绘…

电脑开机后出现Aptio Setup Utility 处理方法

电脑开机后出现Aptio Setup Utility怎么处理 Aptio Setup Utility界面的原因: 这是由于 bios设置与真实的硬件情况不匹配硬盘故障找不到可启动的硬盘情况 我的问题是找不到可启动的硬盘情况 解决方式如下: 进入如下界面了,选择Boot选项…

通信系统的最佳线性均衡器(2)---自适应滤波算法

本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对通信等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记:…

干货 | 如何进行群体DNA甲基化分析

目前,针对群体的研究基本上还是以重测序为主,基于对遗传多样性丰富的自然群体中的个体进行全基因组重测序,研究物种遗传进化多样性,结合准确的目标性状的表型数据及统计方法进行全基因组关联分析,可对动植物复杂农艺性…

【数据分析】用Python做事件抽取任务-快速上手方案

目录 方法一:使用OmniEvent库安装OmniEvent使用OmniEvent进行事件抽取OmniEvent优点缺点 方法二:使用大模型使用GPT网页版进行事件抽取事件类型列表 大模型优点缺点 总结 在自然语言处理(NLP)领域,事件抽取是一项关键任…

迅狐短视频商城系统:打造直播带货、社区种草和商品分销一站式解决方案

迅狐短视频商城系统作为一体化电商解决方案,致力于为用户提供全方位、便捷的购物体验。从直播带货到社区种草、再到商品分销,系统提供了全面的功能模块,满足用户多元化的需求。 一、直播带货功能模块 迅狐短视频商城系统的直播带货功能模块&…

SAMBA(简单混合状态空间模型用于高效的无限上下文语言建模)及其对长文本模型的改进

论文地址: https://arxiv.org/pdf/2406.07522 SAMBA(Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling)是一种新型的基于Transformer的语言模型,旨在解决传统大语言模型在处理长文本时遇到的…

【初阶数据结构】二叉树(附题)

目录 1.树概念及结构 1.1树的概念 1.2 树的相关概念(树结构的相关概念命名参考自然树和人的血缘关系) 1.3 树的表示 1.4 树在实际中的运用(表示文件系统的目录树结构,初次之外网盘中使用到) 2.二叉树概念及结构 …

关于OS中逻辑地址与物理地址转换

首先将逻辑地址134D从十六进制转为2进制 0001 0011 0100 1101 1)1K的时候对应2的10次方 页面大小占10位 从后往前数 0001 00 || 11 0100 1101 前面的转为十进制为4 对应页号4内容1A转为2进制01 1010将这个替换原来的前六位数字 即0110 1011 0100 1101 再转换为…

『互联网三驾马车』

某天开会的时候,老板问了大家一个问题,对目前各个角色分工合作有哪些不满意的地方。有人回答到,能不能别让产品同学每次都在假期前几天发布需求,让开发同学周末或者假期加班搞需求,然后在还在假期看着产品同学到处去玩…

【React 】折叠面板,点击展开时再请求数据

需求背景:使用折叠面板的形式展示数据,面板内部数据需要在打开时请求接口获取。 遇到问题:最开始使用Antd 的折叠面板组件,它对于数据直接渲染是没问题的,但是不好满足打开面板时再动态加载数据的需求,于是…

Linux机器通过Docker-Compose安装Jenkins发送Allure报告

目录 一、安装Docker 二、安装Docker Compose 三、准备测试用例 四、配置docker-compose.yml 五、启动Jenkins 六、配置Jenkins和Allure插件 七、创建含pytest的Jenkins任务 八、项目结果通知 1.通过企业微信通知 2.通过邮件通知 九、配置域名DNS解析 最近小编接到一…

MyBatis 源码分析--SqlSessionFactory

前言: 前文我们简单的回顾了 MyBatis 的基本概念,有聊到核心组件,工作流程等,本篇我们开始深入剖析 MyBatis 的核心源码,欢迎大家持续关注。 Mybatis 知识传送门 初识 MyBatis 【MyBatis 核心概念】 MyBatis 源码解…

深度学习500问——Chapter12:网络搭建及训练(3)

文章目录 12.3.5 Caffe有哪些接口 12.4 网络搭建有什么原则 12.4.1 新手原则 12.4.2 深度优先原则 12.4.3 卷积核size一般为奇数 12.4.4 卷积核不是越大越好 12.5 有哪些经典的网络模型值得我们去学习的 12.6 网络训练有哪些技巧 12.6.1 合适的数据集 12.6.2 合适的预…

【数据库】数据库脚本编写规范(Word原件)

编写本文档的目的是保证在开发过程中产出高效、格式统一、易阅读、易维护的SQL代码。 1 编写目的 2 SQL书写规范 3 SQL编写原则 软件全套资料获取进主页或者本文末个人名片直接获取。

[图解]企业应用架构模式2024新译本讲解15-行数据入口

1 00:00:01,060 --> 00:00:02,770 数据算完了 2 00:00:03,070 --> 00:00:07,720 接下来就是我们这一节的主要内容了 3 00:00:08,500 --> 00:00:13,630 应用服务调用第三方的,Email 4 00:00:13,640 --> 00:00:18,280 包括集成应用的接口来发Email 5 …