文心一言 VS 讯飞星火 VS chatgpt (285)-- 算法导论21.2 4题

四、请给出图 21-3 所示操作序列的一个运行时间的渐近紧确界,假定使用链表表示和加权合并启发式策略。如果要写代码,请用go语言。

文心一言:

图 21-3 没有直接给出,但通常这种操作序列可能与某种数据结构(如并查集或加权并查集)的操作相关。在加权并查集(也称为加权并查集或带权并查集)中,我们通常执行两种基本操作:union(x, y, w)(将包含 xy 的两个集合合并,如果它们来自不同的集合,则添加权重 w)和 find(x)(查找 x 所在的集合的代表元素)。

使用链表表示和加权合并启发式策略(例如按秩合并或按大小合并)的加权并查集的运行时间通常取决于合并和查找操作的次数以及启发式策略的效率。

对于 union 操作,如果使用按大小合并(Union by Size)或按秩合并(Union by Rank),则每个 union 操作的时间复杂度大致为 O(α(n)),其中 α 是阿克曼(Ackermann)函数的反函数,它增长得非常慢,以至于对于实际应用来说,可以认为它是常数时间。

对于 find 操作,如果使用路径压缩(Path Compression)优化,则每个 find 操作的时间复杂度也是 O(α(n))。

因此,如果我们有一系列 unionfind 操作,并且总共有 N 个这样的操作,则运行时间的渐近紧确界是 O(Nα(n)),其中 n 是元素的总数。然而,由于 α(n) 在实践中增长得非常慢,我们通常只关注线性部分,即 O(N)。

下面是一个简化的 Go 语言实现,它使用切片(在内部类似于链表)来表示并查集,并使用按大小合并和路径压缩策略:

package main

import (
	"fmt"
)

type UnionFind struct {
	parent []int // parent[i] 表示元素i的父节点,如果是根节点则为i自己
	size   []int // size[i] 表示以i为根的集合的大小
	rank   []int // rank[i] 表示以i为根的集合的秩(通常用于按秩合并)
}

func NewUnionFind(n int) *UnionFind {
	parent := make([]int, n)
	size := make([]int, n)
	rank := make([]int, n)
	for i := 0; i < n; i++ {
		parent[i] = i
		size[i] = 1
		rank[i] = 0
	}
	return &UnionFind{parent, size, rank}
}

func (uf *UnionFind) Find(x int) int {
	if uf.parent[x] != x {
		// 路径压缩
		uf.parent[x] = uf.Find(uf.parent[x])
	}
	return uf.parent[x]
}

func (uf *UnionFind) Union(x, y int) {
	rootX := uf.Find(x)
	rootY := uf.Find(y)
	if rootX == rootY {
		return
	}
	// 假设我们使用按大小合并
	if uf.size[rootX] > uf.size[rootY] {
		uf.parent[rootY] = rootX
		uf.size[rootX] += uf.size[rootY]
	} else {
		uf.parent[rootX] = rootY
		uf.size[rootY] += uf.size[rootX]
		// 如果需要,也可以更新rank
	}
}

func main() {
	// 示例使用
	uf := NewUnionFind(10)
	uf.Union(1, 2)
	uf.Union(3, 4)
	uf.Union(2, 5)
	fmt.Println(uf.Find(5)) // 应该输出与Find(1)或Find(2)相同的值
}

请注意,这个实现没有包括权重 w,因为问题描述中没有明确提到如何使用它。如果 w 是重要的,并且需要用于合并操作中的某种决策,那么你可能需要修改 Union 方法以包含权重,并根据需要更新集合的大小或秩。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

讯飞星火:

对于这个问题,首先我们需要理解题目的意思。图21-3所示的操作序列是一个链表操作序列,我们需要找出这个操作序列的运行时间的渐近紧确界。这是一个关于数据结构的问题,特别是链表和加权合并启发式策略。

在这个问题中,我们可以使用Go语言来实现一个链表,并使用加权合并启发式策略来优化链表的合并操作。这样,我们就可以得到操作序列的运行时间的渐近紧确界。

以下是Go语言实现的代码:

package main

import (
	"fmt"
)

type Node struct {
	value int
	next  *Node
}

func NewNode(value int) *Node {
	return &Node{value: value}
}

func mergeLists(list1, list2 *Node) *Node {
	dummy := &Node{}
	current := dummy
	for list1 != nil && list2 != nil {
		if list1.value < list2.value {
			current.next = list1
			list1 = list1.next
		} else {
			current.next = list2
			list2 = list2.next
		}
		current = current.next
	}
	if list1 != nil {
		current.next = list1
	} else {
		current.next = list2
	}
	return dummy.next
}

func main() {
	list1 := NewNode(1)
	list1.next = NewNode(3)
	list1.next.next = NewNode(5)

	list2 := NewNode(2)
	list2.next = NewNode(4)
	list2.next.next = NewNode(6)

	mergedList := mergeLists(list1, list2)

	for mergedList != nil {
		fmt.Println(mergedList.value)
		mergedList = mergedList.next
	}
}

这段代码首先定义了一个链表节点类型Node,然后定义了一个创建新节点的函数NewNode。接着定义了一个合并两个链表的函数mergeLists,这个函数使用了加权合并启发式策略,即每次从两个链表中取出较小的元素添加到结果链表中。最后在main函数中创建了两个链表并调用mergeLists函数进行合并,然后打印出合并后的链表。

360智脑:

很抱歉,由于我无法直接查看图21-3或任何其他图像,因此我不能为您提供该图所示操作序列的渐近紧确界。如果您能提供更多关于操作序列或相关算法的详细信息,我可能能够帮助您分析其时间复杂度。

关于使用链表表示和加权合并启发式策略,这通常是指在数据结构如优先队列(也称为堆)中,其中元素根据某个优先级进行组织。加权合并启发式策略可能是指在合并两个优先队列时,对它们的大小或某种权重进行考虑以优化合并操作。但是,没有足够的信息来确定具体的时间复杂度。

如果您需要编写Go语言中的优先队列实现,可以考虑使用如下示例代码:

type Item struct {
    value    interface{}
    priority float64
}

type PriorityQueue struct {
    items []Item
}

func (pq *PriorityQueue) Push(x interface{}) {
    item := &Item{value: x, priority: rand.Float64()}
    pq.items = append(pq.items, *item)
}

func (pq *PriorityQueue) Pop() interface{} {
    item := pq.items[0]
    pq.items = pq.items[1:]
    return item.value
}

func (pq *PriorityQueue) UpdatePriority(i, priority float64) {
    // Implement the weighted merge heuristic here.
    // This usually involves updating the priority of an existing item or merging two items.
}

// Other methods for manipulating the queue could be added here.

请注意,上述代码仅提供了一个基本的优先队列结构,并没有实现加权合并启发式策略。根据您提供的信息,您需要实现UpdatePriority方法来包含加权合并逻辑。这将涉及查找具有特定索引的项并更新其优先级,或者如果需要合并,则合并两个项并更新队列。

如果您有关于操作序列或加权合并策略的更多详细信息,请提供,以便我可以提供更具体的帮助。

智谱清言:

抱歉,由于您的请求中没有提供图21-3的详细信息,我无法给出具体的操作序列或其运行时间的渐近紧确界。此外,没有具体的操作序列,我也无法为您提供使用Go语言编写的代码。
如果您能提供更多关于图21-3的详细信息,例如其中的节点、边以及相关的操作,我将很乐意帮助您分析其运行时间并给出渐近紧确界。同时,如果您需要关于如何使用链表和加权合并启发式策略的代码示例,也请提供具体的需求,我会根据您的需求为您提供相应的代码示例。

天工:

为了回答这个问题,我们需要首先理解图 21-3 中的操作序列是什么,以及链表表示和加权合并启发式策略的具体含义。然而,由于我无法直接查看或访问外部资源(如图 21-3),我将假设我们正在讨论的是一种常见的数据结构操作,即并查集(Union-Find)操作,其中包括查找(Find)和合并(Union)操作。

并查集是一种用于处理不交集的数据结构,常用于解决连接问题。加权合并启发式策略是一种优化技术,它保证在执行合并操作时,总是将较小的树连接到较大的树上,这样可以减少树的高度,从而提高查找操作的效率。

在没有具体操作序列的情况下,我们可以给出一个一般性的渐近紧确界。对于一个包含n个元素的并查集,使用路径压缩和加权合并启发式策略,最坏情况下的查找和合并操作的时间复杂度可以被认为是接近O(α(n)),其中α(n)是阿克曼函数的反函数,它在实际中增长的空间非常缓慢,通常认为是一个很小的常数。

现在,如果我们需要用Go语言编写一个实现加权合并启发式策略的并查集的代码,以下是一个简单的示例:

type UnionFind struct {
	parent []int // parent[i]指向i的父节点
	size   []int // size[i]表示以i为根的集合的大小
}

func NewUnionFind(n int) *UnionFind {
	uf := &UnionFind{
		parent: make([]int, n),
		size:   make([]int, n),
	}
	for i := 0; i < n; i++ {
		uf.parent[i] = i
		uf.size[i] = 1
	}
	return uf
}

func (uf *UnionFind) Find(x int) int {
	if uf.parent[x] != x {
		uf.parent[x] = uf.Find(uf.parent[x]) // 路径压缩
	}
	return uf.parent[x]
}

func (uf *UnionFind) Union(x, y int) {
	xRoot := uf.Find(x)
	yRoot := uf.Find(y)
	if xRoot == yRoot {
		return
	}
	// 加权合并启发式策略
	if uf.size[xRoot] < uf.size[yRoot] {
		uf.parent[xRoot] = yRoot
		uf.size[yRoot] += uf.size[xRoot]
	} else {
		uf.parent[yRoot] = xRoot
		uf.size[xRoot] += uf.size[yRoot]
	}
}

在这个代码中,NewUnionFind函数初始化了一个包含n个元素的并查集,Find函数实现了路径压缩的查找操作,Union函数实现了加权合并启发式策略的合并操作。

请注意,这个代码示例是一个基础的实现,可能需要根据具体的操作序列和问题要求进行调整。此外,由于我没有具体的图 21-3 的操作序列,我无法提供更精确的时间复杂度分析。如果你能提供更多的上下文或具体的问题描述,我可以提供更加针对性的解答。

灵小智:

根据使用链表表示和加权合并启发式策略,图 21-3 所示操作序列的一个运行时间的渐近紧确界是 O(n log n),其中 n 为操作序列的长度。以下是用 Go 语言实现的代码示例:

{{ your Go code here }}

chatgpt:

给定图 21-3 中的操作序列,使用链表表示和加权合并启发式策略,下面是用 Go 语言实现的示例代码:

package main

import (
	"fmt"
)

type ListNode struct {
	val  int
	rank int
	next *ListNode
}

type DisjointSet struct {
	headMap map[int]*ListNode
}

func NewDisjointSet() *DisjointSet {
	return &DisjointSet{
		headMap: make(map[int]*ListNode),
	}
}

func (ds *DisjointSet) MakeSet(x int) {
	node := &ListNode{
		val:  x,
		rank: 0,
		next: nil,
	}
	ds.headMap[x] = node
}

func (ds *DisjointSet) Find(x int) *ListNode {
	node := ds.headMap[x]
	if node == nil {
		return nil
	}
	for node.next != nil {
		node = node.next
	}
	return node
}

func (ds *DisjointSet) Union(x, y int) {
	xRoot := ds.Find(x)
	yRoot := ds.Find(y)
	if xRoot == nil || yRoot == nil || xRoot.val == yRoot.val {
		return
	}
	if xRoot.rank < yRoot.rank {
		xRoot, yRoot = yRoot, xRoot
	}
	yRoot.next = xRoot

	if xRoot.rank == yRoot.rank {
		xRoot.rank++
	}
	delete(ds.headMap, y)
}

func main() {
	ds := NewDisjointSet()
	n := 10 // 节点个数

	for i := 1; i <= n; i++ { // 初始化每个节点为单独的集合
		ds.MakeSet(i)
	}

	opSeq := [][]int{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {2, 4}, {6, 8}, {1, 6},
		{3, 8}, {5, 10}, {2, 6}, {1, 3}, {5, 9}} // 操作序列

	for _, op := range opSeq {
		ds.Union(op[0], op[1])
	}

	fmt.Println("集合的最终状态:")
	for i := 1; i <= n; i++ {
		node := ds.Find(i)
		if node != nil {
			fmt.Printf("%d -> ", node.val)
			for node.next != nil {
				node = node.next
				fmt.Printf("%d -> ", node.val)
			}
			fmt.Println()
		}
	}
}

运行该代码可以得到操作序列的结果。请注意,这只是一个示例实现,并不考虑性能优化。您可以根据需要进行调整和改进。

kimi:

图 21-3 没有直接提供在这里,但根据描述,我们可以讨论一个典型的操作序列,其中包含 MAKE-SETFIND-SETUNION 操作,使用链表表示和加权合并启发式策略。

在这种场景下,渐近紧确界(Asymptotic Tight Bound)是指操作序列的总时间复杂度的上限。以下是每种操作的时间复杂度分析:

  1. MAKE-SET:创建单个元素的集合。这个操作是 O(1),因为它只涉及分配内存和初始化。

  2. FIND-SET:查找节点的根节点,使用路径压缩优化。尽管路径压缩会导致多个父节点更新,但摊还分析表明,每个节点的更新操作的摊还代价是 O(1)。

  3. UNION:合并两个集合。在加权合并启发式下,合并操作的摊还时间上界是 O(log n),其中 n 是涉及合并的树中元素的数量。

现在,假设我们有一个包含 n 个元素的操作序列,其中包含 m 个 MAKE-SET、q 个 FIND-SET 和 r 个 UNION 操作。那么,操作序列的总时间复杂度将是:

  • MAKE-SET 操作的总时间:m * O(1) = O(m)
  • FIND-SET 操作的总时间:q * O(1) = O(q)
  • UNION 操作的总时间:r * O(log n) = O(r * log n)

因此,整个操作序列的总时间复杂度是 O(m + q + r * log n)。

如果我们想要一个渐近紧确界,我们需要考虑最坏情况下的 m、q 和 r 的值。在最坏的情况下,每个元素都会被创建一次(m = n),每个元素都会被查找一次(q = n),并且每次 UNION 操作都会合并两个集合(r 取决于操作序列的具体模式,但可以认为是 n - k,其中 k 是最终合并后的连通分量的数量)。

因此,最坏情况下的渐近紧确界是 O(n + n + (n - k) * log n) = O(n + nlog n - klog n)。由于 k <= n,我们可以简化这个表达式为 O(2nlog n)。

以下是使用 Go 语言实现的简单示例代码,用于演示操作的时间复杂度:

package main

import (
	"fmt"
	"math"
)

// 假设 SetNode 和相关操作已经定义

func main() {
	n := 10 // 元素数量
	m := n  // MAKE-SET 操作数量
	q := n  // FIND-SET 操作数量
	r := n - 1 // UNION 操作数量(初始集合数量减1)

	// 计算操作序列的总时间复杂度
	totalComplexity := m + q + r*math.Log2(float64(n))
	fmt.Printf("The total time complexity of the operation sequence is O(%f)\n", totalComplexity)
}

请注意,这个示例仅用于演示如何计算操作序列的总时间复杂度,并提供一个渐

混元:

由于问题中提到了“图 21-3”,但是在这个文本交互中无法显示图片,我假设你指的是在《算法导论》这本书中的习题 21.3-8。这个题目要求分析使用链表表示和加权合并启发式策略的合并操作的运行时间。

加权合并启发式策略(Weighted Union Heuristic)是一种用于优化并查集(Union-Find)数据结构的方法,它通过在合并两个集合时考虑集合的大小来避免树的不平衡。具体来说,当我们合并两个集合时,我们将较小的集合连接到较大的集合上,这样可以保持树的深度较小。

对于每个操作(union 或 find-set),加权合并启发式策略的运行时间是 O(log n),其中 n 是元素的数量。这是因为每次合并操作后,较大集合的大小至少是较小集合的两倍,这意味着集合的数量大约会以对数的速度减少。

下面是用 Go 语言实现的并查集的基本操作,包括初始化、查找和合并:

package main

import "fmt"

type UnionFind struct {
    parent []int
    size   []int
}

func NewUnionFind(n int) *UnionFind {
    parent := make([]int, n)
    size := make([]int, n)
    for i := range parent {
        parent[i] = i
        size[i] = 1
    }
    return &UnionFind{parent: parent, size: size}
}

func (uf *UnionFind) FindSet(x int) int {
    if uf.parent[x] != x {
        uf.parent[x] = uf.FindSet(uf.parent[x]) // 路径压缩
    }
    return uf.parent[x]
}

func (uf *UnionFind) Union(x, y int) {
    rootX := uf.FindSet(x)
    rootY := uf.FindSet(y)
    if rootX == rootY {
        return
    }

    // 加权合并启发式策略
    if uf.size[rootX] > uf.size[rootY] {
        uf.parent[rootY] = rootX
        uf.size[rootX] += uf.size[rootY]
    } else {
        uf.parent[rootX] = rootY
        uf.size[rootY] += uf.size[rootX]
    }
}

func main() {
    uf := NewUnionFind(10)
    uf.Union(1, 2)
    uf.Union(3, 4)
    uf.Union(2, 3)
    fmt.Println(uf.FindSet(1)) // 应该输出根节点的索引
    fmt.Println(uf.FindSet(4)) // 应该输出根节点的索引
}

在这个实现中,我们使用了路径压缩(Path Compression)技术来进一步优化查找操作,使得查找操作的平均时间复杂度接近 O(1)。结合加权合并启发式策略,整个并查集的运行时间复杂度得到了很好的优化。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/729119.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法:分治(归并)题目练习

目录 题目一&#xff1a;排序数组 题目二&#xff1a;数组中的逆序对 题目三&#xff1a;计算右侧小于当前元素的个数 题目四&#xff1a;翻转对 题目一&#xff1a;排序数组 给你一个整数数组 nums&#xff0c;请你将该数组升序排列。 示例 1&#xff1a; 输入&#xf…

收银系统源码推荐收银系统二次开发

千呼新零售收银系统是一套线下线上一体化的收银系统&#xff0c;给商户提供了含有线下收银/称重、线上小程序商城、精细化会员管理、ERP进销存、营销活动、移动店务管理等一体化解决方案&#xff01; 1. 多样化线下收银 线下收银支持Windows收银、安卓收银、智能称重收银、无人…

BFS:FloodFill算法

文章目录 FloodFill算法简介1.图像渲染2.岛屿数量3.岛屿的最大面积4.被围绕的区域总结 FloodFill算法简介 Flood Fill算法是一种用于确定与某个给定节点相连的区域的算法&#xff0c;常用于计算机图形学和图像处理。该算法可以用于诸如填充多边形、检测连通区域等任务。Flood …

Linux 一键部署 Nginx1.26.1 + ModSecurity3

前言 ModSecurity 是 Apache 基金会的一个开源、高性能的 Web 应用程序防火墙(WAF),它提供了强大的安全规则引擎,用于检测和阻止各种攻击行为,如 SQL 注入、XSS 跨站点脚本攻击等。而 nginx 是一个高性能的 Web 服务器,常用于处理大量的并发请求,具有很高的负载均衡能力…

蓝牙数传芯片TD5325A,蓝牙5.1—拓达半导体

拓达TD5325A芯片是一款支持蓝牙BLE&SPP的纯数传芯片&#xff0c;蓝牙5.1版本。芯片的亮点在于性能强&#xff0c;支持APP端直接对芯片做设置与查询操作&#xff0c;包括修改蓝牙名、UUID、MAC地址&#xff0c;以及直接操作蓝牙芯片自身的IO与PWM口&#xff0c;还包括支持简…

Linux:用户账号和权限管理的命令

目录 一、Linux用户的分类和组的分类 1.1、用户账号和组账号 1.2、用户的分类 1.3、组账号 1.4、用户账号文件/etc/passwd 二、用户管理相关命令 2.1、chage命令&#xff1a;用来修改帐号和密码的有效期限&#xff0c;针对目前系统已经存在的用户 2.2、useradd&#xf…

行车记录仪文件夹“0字节”现象解析与恢复策略

一、行车记录仪文件夹“0字节”现象描述 行车记录仪作为现代驾驶中的必备设备&#xff0c;其储存的视频数据对于事故记录和取证至关重要。然而&#xff0c;有时车主们可能会遇到这样一个问题&#xff1a;行车记录仪的某个文件夹内的文件突然变成了0字节大小&#xff0c;无法正…

Vue快速上手和Vue指令

一、Vue快速上手 1、Vue概念 Vue (读音 /vjuː/&#xff0c;类似于 view) 是一套构建用户界面的渐进式框架 Vue2官网&#xff1a;https://v2.cn.vuejs.org/ 构建用户界面&#xff1a;基于数据渲染出用户可以看到的界面 渐进式&#xff1a; 循序渐进&#xff0c;不一定非得把…

操作系统精选题(一)(PV经典问题之生产者与消费者)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;操作系统 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 前言 进程互斥与同步 题目一 题目二 题…

开发uniapp插件包aar文件,使uniapp可以调用jar包

背景 使用 uniapp 开发应用时&#xff0c;很多时候都需要调用第三方的sdk&#xff0c;一般以 jar 为主。为了应对这个问题&#xff0c;官方提供了插件方案&#xff0c;可以将第三方 jar 包进行封装为 aar 包后&#xff0c;再集成到 uniapp 中使用。 一、环境安装工具 1、jdk…

后台管理台字典localStorage缓存删除

localStorage里存放了如以下dictItems_开头的字典数据&#xff0c;localStorage缓存是没有过期时间的&#xff0c;需要手动删除。同时localStorage里还存有其他不需要删除的数据。 这里的方案是遍历localStorage&#xff0c;利用正则和所有key进行匹配&#xff0c;匹配到dict…

qt打包失败 ,应用程序无法正常启动0xc000007b解决办法

用 windeployqt 打包QT程序&#xff0c;运行时提示程序无法正常启动0xc000007b #原因&#xff1a;因本机装了多个版本的Qt&#xff0c;包括32位&#xff0c;64位的&#xff0c;在cmd下可能是环境变量原因&#xff0c;用 windeployqt 打的包无法运行 解决办法&#xff1a; 1、…

【netty】三万字详解!JAVA高性能通信框架,关于netty,看这一篇就够了

目录 1.概述 2.hello world 3.EventLoop 4.channel 4.1.同步 4.2.异步 4.3.调试 4.4.关闭 4.5.为什么要用异步 5.future 6.promise 7.pipeline 8.byteBuf 8.1.创建 8.2.内存模式和池化 8.2.1.内存模式 8.2.2.池化 8.3.组成 8.4.操作 8.4.1.读写 8.4.2.释放…

内容安全复习 2 - 网络信息内容的获取与表示

文章目录 信息内容的获取网络信息内容的类型网络媒体信息获取方法 信息内容的表示视觉信息视觉特征表达文本特征表达音频特征表达 信息内容的获取 网络信息内容的类型 网络媒体信息 传统意义上的互联网网站公开发布信息&#xff0c;网络用户通常可以基于网络浏览器获得。网络…

数据结构_优先级队列(堆)

目录 一、优先级队列 1.1 堆 1.2 PriorityQueue接口 二、模拟实现优先级队列 2.1 初始化 2.2 创建大根堆 (向下调整) 2.3 堆的插入 2.4 堆的删除 2.5 堆排序 总结 一、优先级队列 优先级队列是一种特殊的队列&#xff0c;其出队顺序与入队顺序无关&#xff0c;而与优…

Unet已死,Transformer当立!详细解读基于DiT的开源视频生成大模型EasyAnimate

Diffusion Models视频生成-博客汇总 前言&#xff1a;最近阿里云PIA团队开源了基于Diffusion Transformer结构的视频生成模型EasyAnimate&#xff0c;并且提出了专门针对视频的slice VAE&#xff0c;对于目前基于Unet结构的视频生成最好如SVD形成了降维打击&#xff0c;不论是生…

16s功能注释--PICRUST2的安装及使用

文章目录 安装本地安装conda安装 使用一些报错 安装 本地安装 在github网址下载压缩包&#xff1a;https://github.com/picrust/picrust2/releases/tag/v2.5.2 解压后将bin目录设置到环境变量 conda安装 利用bioconda安装 conda create -n picrust2 -c bioconda -c conda-…

Matlab基础语法:变量和数据类型,基本运算,矩阵和向量,常用函数,脚本文件

目录 一、变量和数据类型 二、基本运算 三、矩阵和向量 四、常用函数 五、脚本文件 六、总结 一、变量和数据类型 Matlab 支持多种数据类型&#xff0c;包括数值类型、字符类型和逻辑类型。掌握这些基本的变量和数据类型&#xff0c;是我们进行数学建模和计算的基础。 数…

网络安全复习笔记

概述 要素 CIA&#xff1a;可用性&#xff1b;完整性&#xff1b;保密性。 可控性&#xff1b;不可否认性&#xff1b;可审查性。 攻击 被动&#xff1a;窃听 - 保密性&#xff1b;监听 - 保密性主动&#xff1a;假冒 - 完整性&#xff1b;重放 - 完整性&#xff1b;改写 -…

数学建模系列(4/4):Matlab建模实战

目录 引言 1. Matlab简介与安装 1.1 Matlab简介 1.2 Matlab的安装 2. Matlab基础操作 2.1 Matlab基础语法和常用命令 2.2 Matlab中的数据类型和数据结构 3. 用Matlab进行建模 3.1 矩阵运算与线性代数 矩阵运算 3.2 Matlab中的绘图功能 绘制2D图形 绘制3D图形 3.3…