YOLOv10改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录:《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进


针对在特征提取过程中,特征信息丢失,特征提取能力不足等问题,研究人员提出了一种加权双向特征金字塔网络(BiFPN),它允许简单快速的多尺度特征融合;可以同时统一缩放所有主干网络、特征网络以及边界框/类别预测网络的分辨率、深度和宽度。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

 专栏地址YOLOv10入门 + 涨点——持续更新各种涨点方法

目录

1. 原理

2.BiFPN代码实现

2.1 将BiFPN代码添加到YOLOv10种

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

 3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


1. 原理

论文地址:EfficientDet: Scalable and Efficient Object Detection——点击即可跳转

官方代码:BiFPN官方代码仓库——点击即可跳转

BIFPN,全称为双向特征金字塔网络(Bidirectional Feature Pyramid Network),是一种用于目标检测和图像分割的神经网络架构。它在EfficientDet和其他一些计算机视觉任务中被广泛使用。BIFPN的设计目标是提高特征融合的效率和效果,使得模型在计算资源有限的情况下仍能保持高性能。以下是对BIFPN的详细讲解:

背景

在计算机视觉任务中,特征金字塔网络(FPN)是一种常用的方法,它通过构建不同尺度的特征图来捕获不同尺度的目标。然而,传统的FPN存在一些缺点,如特征融合效率低、信息流通不充分等。BIFPN则通过引入双向的特征融合机制和加权的特征融合方法来克服这些问题。

核心思想

  1. 双向特征融合: 传统的FPN是单向的,即从高层特征图向低层特征图传递信息。而BIFPN在此基础上增加了反向的信息传递,即从低层特征图向高层特征图传递信息。这种双向的信息流动使得特征图之间的信息融合更加充分。

  2. 加权特征融合: 在BIFPN中,不同尺度的特征图在融合时会分配不同的权重。这些权重是可学习的参数,模型在训练过程中会自动调整它们,以最优地融合不同尺度的特征。这样一来,模型能够更好地利用每个特征图的信息,提高整体的特征表示能力。

结构细节

BIFPN的结构设计非常灵活,可以适应不同的网络架构和任务需求。以下是BIFPN的几个关键组件:

  • 上下文融合层:在上下文融合层中,BIFPN将来自不同尺度的特征图进行融合,采用加权求和的方式。这种加权求和通过学习到的权重来平衡不同特征图的贡献。

  • 重复融合模块:BIFPN中通常会堆叠多个融合模块,这些模块会反复进行特征融合,从而进一步增强特征的表达能力。

  • 尺度变化处理:BIFPN能够处理不同尺度的特征图,并在融合过程中考虑到这些尺度变化。通过上下采样等操作,BIFPN可以有效地处理不同分辨率的特征图。

优势

  1. 高效性:通过加权特征融合和重复融合模块,BIFPN能够在保持高效计算的同时,提升特征表示能力。

  2. 鲁棒性:双向特征融合使得BIFPN对不同尺度目标的检测更加鲁棒,能够更好地应对多尺度问题。

  3. 灵活性:BIFPN可以方便地集成到不同的神经网络架构中,适应不同的任务需求。

应用

BIFPN被广泛应用于各种计算机视觉任务中,尤其是在目标检测和图像分割方面表现出色。比如,在EfficientDet中,BIFPN作为核心组件之一,通过高效的特征融合机制显著提升了模型的检测性能。

总结

BIFPN通过引入双向特征融合和加权特征融合,克服了传统FPN的局限性,提高了特征融合的效率和效果。其灵活高效的设计使其在计算机视觉任务中得到广泛应用,为提升模型性能提供了有力支持。

2.BiFPN代码实现

2.1 将BiFPN代码添加到YOLOv10种

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中,并在该文件的__all__中添加“Concat_BiFPN” 

class Concat_BiFPN(nn.Module):
    def __init__(self, dimension=1):
        super(Concat_BiFPN, self).__init__()
        self.d = dimension
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1]]
        return torch.cat(x, self.d)

BiFPN的主要流程可以分为以下几个步骤:

  1. 特征提取:首先,输入图像经过卷积神经网络(如EfficientNet等)进行特征提取,得到一系列特征图,这些特征图包含了不同层级的语义信息。

  2. 自下而上特征传递:BiFPN从底层开始,利用双线性池化将低分辨率特征图上采样到高分辨率,然后使用双向连接,将上一层的特征图与下一层的上采样特征图进行融合。这种自下而上的特征传递可以帮助从更低层级获取更丰富的信息。

  3. 自上而下特征传递:接着,BiFPN沿着特征金字塔网络的自上而下路径进行特征传递。在这个过程中,BiFPN利用双向连接,将上一层的特征图与下一层的上采样特征图进行融合,以获得更加丰富和准确的特征表征。

  4. 多尺度特征融合:BiFPN在每个层级上都进行多尺度特征融合,将不同分辨率的特征图通过双线性池化进行融合,从而提高特征的表征能力和鲁棒性。

  5. 最终特征输出:最后,BiFPN输出的特征图经过一系列后续处理,如分类器和回归器等,用于目标检测任务中的目标分类和边界框回归等。

通过这样的流程,BiFPN能够充分利用不同层级的特征信息,并通过双向连接和双线性池化等技巧,提高了特征的表征能力和目标检测的性能。

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/v10下面新建文件yolov10_BiFPN.yaml文件,粘贴下面的内容

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, 
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv10n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv10 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat_BiFPN, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat_BiFPN, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat_BiFPN, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

温馨提示:本文只是对yolov10n基础上添加模块,如果要对yolov10n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。 


# YOLOv10n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
 
# YOLOv10s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 
# YOLOv10l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# YOLOv10m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
 
# YOLOv10x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.4 在task.py中进行注册

关键步骤四:在parse_model函数中进行注册

elif m is Concat_BiFPN:
            c2 = sum(ch[x] for x in f)

2.5 执行程序

关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolov10_BiFPN.yaml的路径即可

from ultralytics import YOLOv10
 
# Load a model
# model = YOLO('yolov8n.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
 
model = YOLOv10(r'/projects/yolo/yolov10/ultralytics/cfg/models/v10/yolov10_BiFPN.yaml')  # build from YAML and transfer weights
 
# Train the model
model.train(batch=16)

建议大家写绝对路径,确保一定能找到

  🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码分享

https://pan.baidu.com/s/1ZDM2aQ55nXx_aFxqPm9Jgg?pwd=z95u

 提取码: z95u 

4. GFLOPs

关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv10nGFLOPs

改进后的GFLOPs 

5. 进阶

只需要更换code和ymal文件,其他的步骤相同 

# 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支concat操作
class BiFPN_Concat2(nn.Module):
    def __init__(self, dimension=1):
        super(BiFPN_Concat2, self).__init__()
        self.d = dimension
        self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1]]
        return torch.cat(x, self.d)
 
 
# 三个分支concat操作
class BiFPN_Concat3(nn.Module):
    def __init__(self, dimension=1):
        super(BiFPN_Concat3, self).__init__()
        self.d = dimension
        # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
        # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
        # 从而在参数优化的时候可以自动一起优化
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1], weight[2] * x[2]]
        return torch.cat(x, self.d)
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, 
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv10n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv10 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, BiFPN_Concat2, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, BiFPN_Concat3, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, BiFPN_Concat2, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

6. 总结

BIFPN(双向特征金字塔网络)通过双向特征融合和加权特征融合的创新设计,显著提升了特征金字塔网络(FPN)的性能。其核心思想是将信息在特征金字塔中双向传递,即从高层特征图向低层特征图传递,同时也从低层特征图向高层特征图传递,确保特征信息的充分融合。同时,BIFPN引入了可学习的加权机制,通过在训练过程中自动调整权重,优化不同尺度特征图的融合效果。这种设计不仅提高了特征表示的能力,还保持了计算的高效性,使其在目标检测和图像分割等计算机视觉任务中表现出色,能够更好地应对多尺度问题和不同任务需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/728965.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【面试干货】Java的基础类型和字节大小

【面试干货】Java的基础类型和字节大小 💖The Begin💖点点关注,收藏不迷路💖 在Java编程语言中,有八种基本数据类型,它们分别是:布尔型(boolean)、字节型(byt…

前端架构(含演进历程、设计内容、AI辅助设计、架构演进历程)

前端架构的演进历程 前端架构的设计内容 技术选型(库、工具、标准规范、性能、安全、扩展性 )设计模式及代码组织(模块化、分层架构、数据结构)构建与部署(性能优化、自动化、集成、测试) 项目体量 小型项目:对于小型项目,前端架构需要关注模块化、组件…

可视化大屏开发涉及到的8大技术栈,收藏起来不迷路。

可视化大屏开发设计涉及到的技术栈包括: 前端开发技术: HTML、CSS、JavaScript、TypeScript等,用于构建用户界面和实现交互效果。 数据可视化库: 如D3.js、ECharts、Highcharts等,用于将数据以图表、地图、仪表盘等…

Hibernate 框架进行对象关系映射(ORM)

Hibernate是一个广泛使用的Java对象关系映射(ORM)框架,它通过将Java类与数据库表关联起来,使得开发人员可以使用面向对象的编程方式进行数据库操作。Hibernate的主要目标是消除冗长的JDBC代码和手动处理SQL的需求,从而…

在C#中对 JSON进行序列化和反序列化处理

概述:在现代软件开发领域,不同系统和平台之间的数据交换是不可或缺的方面。JSON(JavaScript 对象表示法)因其轻量级、人类可读和易于解析的特性而成为一种无处不在的数据格式。使用 C# 🚀编程的 JSON 序列化和反序列化…

C# 语言在AGI 赛道上能做什么

自从2022年11月OpenAI正式对外发布ChatGPT依赖,AGI 这条赛道上就挤满了重量级的选手,各大头部公司纷纷下场布局。原本就在机器学习、深度学习领域占据No.1的Python语言更是继续稳固了自己AI一哥的位置。凭借着Microsoft 和 OpenAI 长期以来一直是紧密相连…

团队管理五个基本法则,帮你打造高效团队

团队管理是一项至关重要的工作,作为一名管理者,应该如何在团队管理中发挥作用呢?以下是团队管理的五个基本原则,它们能够帮助你打造出一个高效协作的团队。 一、以身作则 团队要保持超强的执行力,管理者必须以身作则…

【分类讨论】899. 有序队列

本文涉及知识点 分类讨论 LeetCode899. 有序队列 给定一个字符串 s 和一个整数 k 。你可以从 s 的前 k 个字母中选择一个,并把它加到字符串的末尾。 返回 在应用上述步骤的任意数量的移动后,字典序最小的字符串 。 示例 1: 输入&#xff1…

工业智能网关如何与设备连接?天拓四方

随着工业4.0时代的来临,智能化、自动化已成为工业生产的标配。在这样的背景下,工业智能网关应运而生,成为连接工业设备、实现数据交互与管理的关键节点。本文将阐述工业智能网关如何与设备连接,旨在为读者提供一套清晰、实用的解决…

【node】启动本地打包文件的方式

前言 … 目标 1 初始化node文件 2 将打包文件通过node发布到本地 3 系列文件 【node】创建本地接口 一 node方式 1 在新建一个空的文件夹node 进入空文件夹在,文件夹的地址栏输入cmd回车,会自动跳转到命令行工具里 2 配置初始化文件 在命令行输入命令npm init,生成pac…

CSDN自定义模块全攻略,DIY系统原有样式打造专属个性化主页!

个人主页:学习前端的小z 个人专栏:HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结,欢迎大家在评论区交流讨论! 文章目录 💯如何通过HTMLCSS自定义模板diy出自己的个性化csdn主页&#x…

# 消息中间件 RocketMQ 高级功能和源码分析(八)

消息中间件 RocketMQ 高级功能和源码分析(八) 一、消息中间件 RocketMQ 源码分析:实时更新消息消费队列与索引文件流程说明 1、实时更新消息消费队列与索引文件 消息消费队文件、消息属性索引文件都是基于 CommitLog 文件构建的&#xff0…

mock-前端数据模拟

简介 数据模拟不是开发流程中的必要一环 Json-server 简介: json-server 是一个简单的 Node.js 服务端应用程序,这个工具的主要作用是提供一个模拟的后端服务,可以在前端开发过程中独立于后端进行简单工作。 使用: 1、 安装…

Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路

🎯要点 🎯计算地球大气层中热层金属坠物运动轨迹 | 🎯计算炮弹最佳弹射角度耦合微分方程 | 🎯计算电磁拉莫尔半径螺旋运动 | 🎯计算航天器重力弹弓运动力学微分方程 | 🎯计算双摆的混沌运动非线性微分方程…

【无线传感网】分簇路由算法介绍

目录 1、LEACH路由算法 2、PEGASIS 算法 3、TEEN 算法 5、APTEEN 5、LEACH-C 算法 无线传感网中的路由协议就是寻找一条路径让网络中节点沿着这条路径将数据信息传输出去。路由协议的两大关键要点就是路径的优化和数据的分组,在传统计算机网络中,是将网络的拓扑…

windows系统实现应用程序开机即运行(不登录系统也行)

由于近期需要设置一个Java程序开机自启动,因此试了一下方法,总结了两点,一个是需要用户登录系统之后再启动,一种是不需要登录,只要开机就会启动。 先看准备工作,写一个启动脚本: echo on E: cd…

Flink入门实战详解

Flink入门实战 Flink项目构建 1)基于MavenIdea创建项目&#xff1a; 使用maven进行项目构建&#xff0c;如图1所示。 图-34 构建maven项目 输入项目中的maven的坐标和存储坐标&#xff0c;如图2所示。 图2 maven坐标和存储位置 2)Maven依赖&#xff1a; <properties>…

虚幻引擎 Gerstner Waves -GPU Gems 从物理模型中实现有效的水体模拟

1.1 目标与范围 我们从简单的正弦函数开始&#xff0c;然后逐步过渡到更复杂的函数&#xff0c;以适应需要。 本章主要解释系统参数的物理意义&#xff0c;表明将水表面近似为正弦波的总和并不像人们通常认为的那样是随意的。我们特别关注将基本模型转换为实际实现所需的数学方…

Linux系统资源监控nmon工具下载及使用介绍

一、资源下载 夸克网盘链接&#xff1a;https://pan.quark.cn/s/2684089bc34d 里面包含了各种分享的实用工具&#xff0c;nmon在 Linux服务器监控nmon工具 文件夹内 文件说明&#xff1a; nmon16p_binaries.tar.gz 为最新的nmon官方工具包&#xff0c;支持linux全平台 nmo…

钢琴块小游戏(附源码)

代码结构 app.png是游戏运行主界面的图片&#xff08;可以加载自己喜欢的主界面图片&#xff09; Assets文件夹里面装的是一些需要用到的游戏图片 全部都可以替换为自己喜欢的图片 Fonts里面装的是 Sounds文件夹里面装的是 一 . 主程序代码 1.运行这个代码使得游戏开始 2.主界面…