Paper1 CLIP2Scene: Towards Label-Efficient 3D Scene Understanding by CLIP
摘要原文: Contrastive Language-Image Pre-training (CLIP) achieves promising results in 2D zero-shot and few-shot learning. Despite the impressive performance in 2D, applying CLIP to help the learning in 3D scene understanding has yet to be explored. In this paper, we make the first attempt to investigate how CLIP knowledge benefits 3D scene understanding. We propose CLIP2Scene, a simple yet effective framework that transfers CLIP knowledge from 2D image-text pre-trained models to a 3D point cloud network. We show that the pre-trained 3D network yields impressive performance on various downstream tasks, i.e., annotation-free and fine-tuning with labelled data for semantic segmentation. Specifically, built upon CLIP, we design a Semantic-driven Cross-modal Contrastive Learning framework that pre-trains a 3D network via semantic and spatial-temporal consistency regularization. For the former, we first leverage CLIP’s text semantics to select the positive and negative point samples and then employ the contrastive loss to train the 3D network. In terms of the latter, we force the consistency between the temporally coherent point cloud features and their corresponding image features. We conduct experiments on SemanticKITTI, nuScenes, and ScanNet. For the first time, our pre-trained network achieves annotation-free 3D semantic segmentation with 20.8% and 25.08% mIoU on nuScenes and ScanNet, respectively. When fine-tuned with 1% or 100% labelled data, our method significantly outperforms other self-supervised methods, with improvements of 8% and 1% mIoU, respectively. Furthermore, we demonstrate the generalizability for handling cross-domain datasets. Code is publicly available.
Paper2 Single View Scene Scale Estimation Using Scale Field
摘要原文: In this paper, we propose a single image scale estimation method based on a novel scale field representation. A scale field defines the local pixel-to-metric conversion ratio along the gravity direction on all the ground pixels. This representation resolves the ambiguity in camera parameters, allowing us to use a simple yet effective way to collect scale annotations on arbitrary images from human annotators. By training our model on calibrated panoramic image data and the in-the-wild human annotated data, our single image scene scale estimation network generates robust scale field on a variety of image, which can be utilized in various 3D understanding and scale-aware image editing applications.
Paper3 BUOL: A Bottom-Up Framework With Occupancy-Aware Lifting for Panoptic 3D Scene Reconstruction From a Single Image
摘要原文: Understanding and modeling the 3D scene from a single image is a practical problem. A recent advance proposes a panoptic 3D scene reconstruction task that performs both 3D reconstruction and 3D panoptic segmentation from a single image. Although having made substantial progress, recent works only focus on top-down approaches that fill 2D instances into 3D voxels according to estimated depth, which hinders their performance by two ambiguities. (1) instance-channel ambiguity: The variable ids of instances in each scene lead to ambiguity during filling voxel channels with 2D information, confusing the following 3D refinement. (2) voxel-reconstruction ambiguity: 2D-to-3D lifting with estimated single view depth only propagates 2D information onto the surface of 3D regions, leading to ambiguity during the reconstruction of regions behind the frontal view surface. In this paper, we propose BUOL, a Bottom-Up framework with Occupancy-aware Lifting to address the two issues for panoptic 3D scene reconstruction from a single image. For instance-channel ambiguity, a bottom-up framework lifts 2D information to 3D voxels based on deterministic semantic assignments rather than arbitrary instance id assignments. The 3D voxels are then refined and grouped into 3D instances according to the predicted 2D instance centers. For voxel-reconstruction ambiguity, the estimated multi-plane occupancy is leveraged together with depth to fill the whole regions of things and stuff. Our method shows a tremendous performance advantage over state-of-the-art methods on synthetic dataset 3D-Front and real-world dataset Matterport3D, respectively. Code and models will be released.
Paper4 Learning To Generate Language-Supervised and Open-Vocabulary Scene Graph Using Pre-Trained Visual-Semantic Space
摘要原文: Scene graph generation (SGG) aims to abstract an image into a graph structure, by representing objects as graph nodes and their relations as labeled edges. However, two knotty obstacles limit the practicability of current SGG methods in real-world scenarios: 1) training SGG models requires time-consuming ground-truth annotations, and 2) the closed-set object categories make the SGG models limited in their ability to recognize novel objects outside of training corpora. To address these issues, we novelly exploit a powerful pre-trained visual-semantic space (VSS) to trigger language-supervised and open-vocabulary SGG in a simple yet effective manner. Specifically, cheap scene graph supervision data can be easily obtained by parsing image language descriptions into semantic graphs. Next, the noun phrases on such semantic graphs are directly grounded over image regions through region-word alignment in the pre-trained VSS. In this way, we enable open-vocabulary object detection by performing object category name grounding with a text prompt in this VSS. On the basis of visually-grounded objects, the relation representations are naturally built for relation recognition, pursuing open-vocabulary SGG. We validate our proposed approach with extensive experiments on the Visual Genome benchmark across various SGG scenarios (i.e., supervised / language-supervised, closed-set / open-vocabulary). Consistent superior performances are achieved compared with existing methods, demonstrating the potential of exploiting pre-trained VSS for SGG in more practical scenarios.
Paper5 Patch-Based 3D Natural Scene Generation From a Single Example
摘要原文: We target a 3D generative model for general natural scenes that are typically unique and intricate. Lacking the necessary volumes of training data, along with the difficulties of having ad hoc designs in presence of varying scene characteristics, renders existing setups intractable. Inspired by classical patch-based image models, we advocate for synthesizing 3D scenes at the patch level, given a single example. At the core of this work lies important algorithmic designs w.r.t the scene representation and generative patch nearest-neighbor module, that address unique challenges arising from lifting classical 2D patch-based framework to 3D generation. These design choices, on a collective level, contribute to a robust, effective, and efficient model that can generate high-quality general natural scenes with both realistic geometric structure and visual appearance, in large quantities and varieties, as demonstrated upon a variety of exemplar scenes. Data and code can be found at http://wyysf-98.github.io/Sin3DGen.
Paper6 Chat2Map: Efficient Scene Mapping From Multi-Ego Conversations
摘要原文: Can conversational videos captured from multiple egocentric viewpoints reveal the map of a scene in a cost-efficient way? We seek to answer this question by proposing a new problem: efficiently building the map of a previously unseen 3D environment by exploiting shared information in the egocentric audio-visual observations of participants in a natural conversation. Our hypothesis is that as multiple people (“egos”) move in a scene and talk among themselves, they receive rich audio-visual cues that can help uncover the unseen areas of the scene. Given the high cost of continuously processing egocentric visual streams, we further explore how to actively coordinate the sampling of visual information, so as to minimize redundancy and reduce power use. To that end, we present an audio-visual deep reinforcement learning approach that works with our shared scene mapper to selectively turn on the camera to efficiently chart out the space. We evaluate the approach using a state-of-the-art audio-visual simulator for 3D scenes as well as real-world video. Our model outperforms previous state-of-the-art mapping methods, and achieves an excellent cost-accuracy tradeoff. Project: https://vision.cs.utexas.edu/projects/chat2map.
Paper7 Putting People in Their Place: Affordance-Aware Human Insertion Into Scenes
摘要原文: We study the problem of inferring scene affordances by presenting a method for realistically inserting people into scenes. Given a scene image with a marked region and an image of a person, we insert the person into the scene while respecting the scene affordances. Our model can infer the set of realistic poses given the scene context, re-pose the reference person, and harmonize the composition. We set up the task in a self-supervised fashion by learning to re- pose humans in video clips. We train a large-scale diffusion model on a dataset of 2.4M video clips that produces diverse plausible poses while respecting the scene context. Given the learned human-scene composition, our model can also hallucinate realistic people and scenes when prompted without conditioning and also enables interactive editing. We conduct quantitative evaluation and show that our method synthesizes more realistic human appearance and more natural human-scene interactions when compared to prior work.
Paper8 Semantic Scene Completion With Cleaner Self
摘要原文: Semantic Scene Completion (SSC) transforms an image of single-view depth and/or RGB 2D pixels into 3D voxels, each of whose semantic labels are predicted. SSC is a well-known ill-posed problem as the prediction model has to “imagine” what is behind the visible surface, which is usually represented by Truncated Signed Distance Function (TSDF). Due to the sensory imperfection of the depth camera, most existing methods based on the noisy TSDF estimated from depth values suffer from 1) incomplete volumetric predictions and 2) confused semantic labels. To this end, we use the ground-truth 3D voxels to generate a perfect visible surface, called TSDF-CAD, and then train a “cleaner” SSC model. As the model is noise-free, it is expected to focus more on the “imagination” of unseen voxels. Then, we propose to distill the intermediate “cleaner” knowledge into another model with noisy TSDF input. In particular, we use the 3D occupancy feature and the semantic relations of the “cleaner self” to supervise the counterparts of the “noisy self” to respectively address the above two incorrect predictions. Experimental results validate that the proposed method improves the noisy counterparts with 3.1% IoU and 2.2% mIoU for measuring scene completion and SSC, and also achieves new state-of-the-art accuracy on the popular NYU dataset. The code is available at https://github.com/fereenwong/CleanerS.
中文总结: Semantic Scene Completion (SSC)将单视角深度和/或RGB 2D像素图像转换为3D体素,每个体素的语义标签都被预测。SSC是一个众所周知的不适定问题,因为预测模型必须“想象”可见表面背后的内容,通常由截断有符号距离函数(TSDF)表示。由于深度摄像头的感知缺陷,大多数现有基于深度值估计的嘈杂TSDF的方法遭受1)体积预测不完整和2)语义标签混淆的问题。为此,我们使用地面真实3D体素生成一个完美的可见表面,称为TSDF-CAD,然后训练一个“更干净”的SSC模型。由于模型是无噪声的,预计它将更多地关注未见体素的“想象”。然后,我们提出将中间的“更干净”知识提炼到另一个具有嘈杂TSDF输入的模型中。具体来说,我们使用“更干净自身”的3D占用特征和语义关系来监督“嘈杂自身”的对应部分,分别解决上述两个不正确的预测。实验结果验证了该方法提高了测量场景完成和SSC的3.1% IoU和2.2% mIoU的嘈杂对应部分,并且在流行的NYU数据集上实现了新的最先进准确性。代码可在https://github.com/fereenwong/CleanerS获得。
Paper9 Neural Scene Chronology
摘要原文: In this work, we aim to reconstruct a time-varying 3D model, capable of rendering photo-realistic renderings with independent control of viewpoint, illumination, and time, from Internet photos of large-scale landmarks. The core challenges are twofold. First, different types of temporal changes, such as illumination and changes to the underlying scene itself (such as replacing one graffiti artwork with another) are entangled together in the imagery. Second, scene-level temporal changes are often discrete and sporadic over time, rather than continuous. To tackle these problems, we propose a new scene representation equipped with a novel temporal step function encoding method that can model discrete scene-level content changes as piece-wise constant functions over time. Specifically, we represent the scene as a space-time radiance field with a per-image illumination embedding, where temporally-varying scene changes are encoded using a set of learned step functions. To facilitate our task of chronology reconstruction from Internet imagery, we also collect a new dataset of four scenes that exhibit various changes over time. We demonstrate that our method exhibits state-of-the-art view synthesis results on this dataset, while achieving independent control of viewpoint, time, and illumination. Code and data are available at https://zju3dv.github.io/NeuSC/.
Paper10 SceneTrilogy: On Human Scene-Sketch and Its Complementarity With Photo and Text
摘要原文: In this paper, we extend scene understanding to include that of human sketch. The result is a complete trilogy of scene representation from three diverse and complementary modalities – sketch, photo, and text. Instead of learning a rigid three-way embedding and be done with it, we focus on learning a flexible joint embedding that fully supports the “optionality” that this complementarity brings. Our embedding supports optionality on two axis: (i) optionality across modalities – use any combination of modalities as query for downstream tasks like retrieval, (ii) optionality across tasks – simultaneously utilising the embedding for either discriminative (e.g., retrieval) or generative tasks (e.g., captioning). This provides flexibility to end-users by exploiting the best of each modality, therefore serving the very purpose behind our proposal of a trilogy at the first place. First, a combination of information-bottleneck and conditional invertible neural networks disentangle the modality-specific component from modality-agnostic in sketch, photo, and text. Second, the modality-agnostic instances from sketch, photo, and text are synergised using a modified cross-attention. Once learned, we show our embedding can accommodate a multi-facet of scene-related tasks, including those enabled for the first time by the inclusion of sketch, all without any task-specific modifications. Project Page: http://www.pinakinathc.me/scenetrilogy
Paper11 PLA: Language-Driven Open-Vocabulary 3D Scene Understanding
摘要原文: Open-vocabulary scene understanding aims to localize and recognize unseen categories beyond the annotated label space. The recent breakthrough of 2D open-vocabulary perception is largely driven by Internet-scale paired image-text data with rich vocabulary concepts. However, this success cannot be directly transferred to 3D scenarios due to the inaccessibility of large-scale 3D-text pairs. To this end, we propose to distill knowledge encoded in pre-trained vision-language (VL) foundation models through captioning multi-view images from 3D, which allows explicitly associating 3D and semantic-rich captions. Further, to foster coarse-to-fine visual-semantic representation learning from captions, we design hierarchical 3D-caption pairs, leveraging geometric constraints between 3D scenes and multi-view images. Finally, by employing contrastive learning, the model learns language-aware embeddings that connect 3D and text for open-vocabulary tasks. Our method not only remarkably outperforms baseline methods by 25.8% 44.7% hIoU and 14.5% 50.4% hAP_ 50 in open-vocabulary semantic and instance segmentation, but also shows robust transferability on challenging zero-shot domain transfer tasks. See the project website at https://dingry.github.io/projects/PLA.
摘要原文: We present a novel method for recovering the absolute pose and shape of a human in a pre-scanned scene given a single image. Unlike previous methods that perform sceneaware mesh optimization, we propose to first estimate absolute position and dense scene contacts with a sparse 3D CNN, and later enhance a pretrained human mesh recovery network by cross-attention with the derived 3D scene cues. Joint learning on images and scene geometry enables our method to reduce the ambiguity caused by depth and occlusion, resulting in more reasonable global postures and contacts. Encoding scene-aware cues in the network also allows the proposed method to be optimization-free, and opens up the opportunity for real-time applications. The experiments show that the proposed network is capable of recovering accurate and physically-plausible meshes by a single forward pass and outperforms state-of-the-art methods in terms of both accuracy and speed. Code is available on our project page: https://zju3dv.github.io/sahmr/.
Paper13 Incremental 3D Semantic Scene Graph Prediction From RGB Sequences
摘要原文: 3D semantic scene graphs are a powerful holistic representation as they describe the individual objects and depict the relation between them. They are compact high-level graphs that enable many tasks requiring scene reasoning. In real-world settings, existing 3D estimation methods produce robust predictions that mostly rely on dense inputs. In this work, we propose a real-time framework that incrementally builds a consistent 3D semantic scene graph of a scene given an RGB image sequence. Our method consists of a novel incremental entity estimation pipeline and a scene graph prediction network. The proposed pipeline simultaneously reconstructs a sparse point map and fuses entity estimation from the input images. The proposed network estimates 3D semantic scene graphs with iterative message passing using multi-view and geometric features extracted from the scene entities. Extensive experiments on the 3RScan dataset show the effectiveness of the proposed method in this challenging task, outperforming state-of-the-art approaches.
Paper14 HexPlane: A Fast Representation for Dynamic Scenes
摘要原文: Modeling and re-rendering dynamic 3D scenes is a challenging task in 3D vision. Prior approaches build on NeRF and rely on implicit representations. This is slow since it requires many MLP evaluations, constraining real-world applications. We show that dynamic 3D scenes can be explicitly represented by six planes of learned features, leading to an elegant solution we call HexPlane. A HexPlane computes features for points in spacetime by fusing vectors extracted from each plane, which is highly efficient. Pairing a HexPlane with a tiny MLP to regress output colors and training via volume rendering gives impressive results for novel view synthesis on dynamic scenes, matching the image quality of prior work but reducing training time by more than 100x. Extensive ablations confirm our HexPlane design and show that it is robust to different feature fusion mechanisms, coordinate systems, and decoding mechanisms. HexPlane is a simple and effective solution for representing 4D volumes, and we hope they can broadly contribute to modeling spacetime for dynamic 3D scenes.
Paper15 Indiscernible Object Counting in Underwater Scenes
摘要原文: Recently, indiscernible scene understanding has attracted a lot of attention in the vision community. We further advance the frontier of this field by systematically studying a new challenge named indiscernible object counting (IOC), the goal of which is to count objects that are blended with respect to their surroundings. Due to a lack of appropriate IOC datasets, we present a large-scale dataset IOCfish5K which contains a total of 5,637 high-resolution images and 659,024 annotated center points. Our dataset consists of a large number of indiscernible objects (mainly fish) in underwater scenes, making the annotation process all the more challenging. IOCfish5K is superior to existing datasets with indiscernible scenes because of its larger scale, higher image resolutions, more annotations, and denser scenes. All these aspects make it the most challenging dataset for IOC so far, supporting progress in this area. For benchmarking purposes, we select 14 mainstream methods for object counting and carefully evaluate them on IOCfish5K. Furthermore, we propose IOCFormer, a new strong baseline that combines density and regression branches in a unified framework and can effectively tackle object counting under concealed scenes. Experiments show that IOCFormer achieves state-of-the-art scores on IOCfish5K.
Paper16 NeuralField-LDM: Scene Generation With Hierarchical Latent Diffusion Models
摘要原文: Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene. To further compress this representation, we train a latent-autoencoder that maps the voxel grids to a set of latent representations. A hierarchical diffusion model is then fit to the latents to complete the scene generation pipeline. We achieve a substantial improvement over existing state-of-the-art scene generation models. Additionally, we show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.
Paper17 Fast Monocular Scene Reconstruction With Global-Sparse Local-Dense Grids
摘要原文: Indoor scene reconstruction from monocular images has long been sought after by augmented reality and robotics developers. Recent advances in neural field representations and monocular priors have led to remarkable results in scene-level surface reconstructions. The reliance on Multilayer Perceptrons (MLP), however, significantly limits speed in training and rendering. In this work, we propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without MLPs. Our globally sparse and locally dense data structure exploits surfaces’ spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data such as color and semantic labels. To apply this representation to monocular scene reconstruction, we develop a scale calibration algorithm for fast geometric initialization from monocular depth priors. We apply differentiable volume rendering from this initialization to refine details with fast convergence. We also introduce efficient high-dimensional Continuous Random Fields (CRFs) to further exploit the semantic-geometry consistency between scene objects. Experiments show that our approach is 10x faster in training and 100x faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.
Paper18 Depth Estimation From Indoor Panoramas With Neural Scene Representation
摘要原文: Depth estimation from indoor panoramas is challenging due to the equirectangular distortions of panoramas and inaccurate matching. In this paper, we propose a practical framework to improve the accuracy and efficiency of depth estimation from multi-view indoor panoramic images with the Neural Radiance Field technology. Specifically, we develop two networks to implicitly learn the Signed Distance Function for depth measurements and the radiance field from panoramas. We also introduce a novel spherical position embedding scheme to achieve high accuracy. For better convergence, we propose an initialization method for the network weights based on the Manhattan World Assumption. Furthermore, we devise a geometric consistency loss, leveraging the surface normal, to further refine the depth estimation. The experimental results demonstrate that our proposed method outperforms state-of-the-art works by a large margin in both quantitative and qualitative evaluations. Our source code is available at https://github.com/WJ-Chang-42/IndoorPanoDepth.
Paper19 SGLoc: Scene Geometry Encoding for Outdoor LiDAR Localization
摘要原文: LiDAR-based absolute pose regression estimates the global pose through a deep network in an end-to-end manner, achieving impressive results in learning-based localization. However, the accuracy of existing methods still has room to improve due to the difficulty of effectively encoding the scene geometry and the unsatisfactory quality of the data. In this work, we propose a novel LiDAR localization framework, SGLoc, which decouples the pose estimation to point cloud correspondence regression and pose estimation via this correspondence. This decoupling effectively encodes the scene geometry because the decoupled correspondence regression step greatly preserves the scene geometry, leading to significant performance improvement. Apart from this decoupling, we also design a tri-scale spatial feature aggregation module and inter-geometric consistency constraint loss to effectively capture scene geometry. Moreover, we empirically find that the ground truth might be noisy due to GPS/INS measuring errors, greatly reducing the pose estimation performance. Thus, we propose a pose quality evaluation and enhancement method to measure and correct the ground truth pose. Extensive experiments on the Oxford Radar RobotCar and NCLT datasets demonstrate the effectiveness of SGLoc, which outperforms state-of-the-art regression-based localization methods by 68.5% and 67.6% on position accuracy, respectively.
Paper20 Turning a CLIP Model Into a Scene Text Detector
摘要原文: The recent large-scale Contrastive Language-Image Pretraining (CLIP) model has shown great potential in various downstream tasks via leveraging the pretrained vision and language knowledge. Scene text, which contains rich textual and visual information, has an inherent connection with a model like CLIP. Recently, pretraining approaches based on vision language models have made effective progresses in the field of text detection. In contrast to these works, this paper proposes a new method, termed TCM, focusing on Turning the CLIP Model directly for text detection without pretraining process. We demonstrate the advantages of the proposed TCM as follows: (1) The underlying principle of our framework can be applied to improve existing scene text detector. (2) It facilitates the few-shot training capability of existing methods, e.g., by using 10% of labeled data, we significantly improve the performance of the baseline method with an average of 22% in terms of the F-measure on 4 benchmarks. (3) By turning the CLIP model into existing scene text detection methods, we further achieve promising domain adaptation ability. The code will be publicly released at https://github.com/wenwenyu/TCM.
Paper21 VisFusion: Visibility-Aware Online 3D Scene Reconstruction From Videos
摘要原文: We propose VisFusion, a visibility-aware online 3D scene reconstruction approach from posed monocular videos. In particular, we aim to reconstruct the scene from volumetric features. Unlike previous reconstruction methods which aggregate features for each voxel from input views without considering its visibility, we aim to improve the feature fusion by explicitly inferring its visibility from a similarity matrix, computed from its projected features in each image pair. Following previous works, our model is a coarse-to-fine pipeline including a volume sparsification process. Different from their works which sparsify voxels globally with a fixed occupancy threshold, we perform the sparsification on a local feature volume along each visual ray to preserve at least one voxel per ray for more fine details. The sparse local volume is then fused with a global one for online reconstruction. We further propose to predict TSDF in a coarse-to-fine manner by learning its residuals across scales leading to better TSDF predictions. Experimental results on benchmarks show that our method can achieve superior performance with more scene details. Code is available at: https://github.com/huiyu-gao/VisFusion
Paper22 FREDOM: Fairness Domain Adaptation Approach to Semantic Scene Understanding
摘要原文: Although Domain Adaptation in Semantic Scene Segmentation has shown impressive improvement in recent years, the fairness concerns in the domain adaptation have yet to be well defined and addressed. In addition, fairness is one of the most critical aspects when deploying the segmentation models into human-related real-world applications, e.g., autonomous driving, as any unfair predictions could influence human safety. In this paper, we propose a novel Fairness Domain Adaptation (FREDOM) approach to semantic scene segmentation. In particular, from the proposed formulated fairness objective, a new adaptation framework will be introduced based on the fair treatment of class distributions. Moreover, to generally model the context of structural dependency, a new conditional structural constraint is introduced to impose the consistency of predicted segmentation. Thanks to the proposed Conditional Structure Network, the self-attention mechanism has sufficiently modeled the structural information of segmentation. Through the ablation studies, the proposed method has shown the performance improvement of the segmentation models and promoted fairness in the model predictions. The experimental results on the two standard benchmarks, i.e., SYNTHIA -> Cityscapes and GTA5 -> Cityscapes, have shown that our method achieved State-of-the-Art (SOTA) performance.
Paper23 Devil’s on the Edges: Selective Quad Attention for Scene Graph Generation
摘要原文: Scene graph generation aims to construct a semantic graph structure from an image such that its nodes and edges respectively represent objects and their relationships. One of the major challenges for the task lies in the presence of distracting objects and relationships in images; contextual reasoning is strongly distracted by irrelevant objects or backgrounds and, more importantly, a vast number of irrelevant candidate relations. To tackle the issue, we propose the Selective Quad Attention Network (SQUAT) that learns to select relevant object pairs and disambiguate them via diverse contextual interactions. SQUAT consists of two main components: edge selection and quad attention. The edge selection module selects relevant object pairs, i.e., edges in the scene graph, which helps contextual reasoning, and the quad attention module then updates the edge features using both edge-to-node and edge-to-edge cross-attentions to capture contextual information between objects and object pairs. Experiments demonstrate the strong performance and robustness of SQUAT, achieving the state of the art on the Visual Genome and Open Images v6 benchmarks.
Paper24 Probing Neural Representations of Scene Perception in a Hippocampally Dependent Task Using Artificial Neural Networks
摘要原文: Deep artificial neural networks (DNNs) trained through backpropagation provide effective models of the mammalian visual system, accurately capturing the hierarchy of neural responses through primary visual cortex to inferior temporal cortex (IT). However, the ability of these networks to explain representations in higher cortical areas is relatively lacking and considerably less well researched. For example, DNNs have been less successful as a model of the egocentric to allocentric transformation embodied by circuits in retrosplenial and posterior parietal cortex. We describe a novel scene perception benchmark inspired by a hippocampal dependent task, designed to probe the ability of DNNs to transform scenes viewed from different egocentric perspectives. Using a network architecture inspired by the connectivity between temporal lobe structures and the hippocampus, we demonstrate that DNNs trained using a triplet loss can learn this task. Moreover, by enforcing a factorized latent space, we can split information propagation into “what” and “where” pathways, which we use to reconstruct the input. This allows us to beat the state-of-the-art for unsupervised object segmentation on the CATER and MOVi-A,B,C benchmarks.
Paper25 Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment
摘要原文: How does audio describe the world around us? In this paper, we propose a method for generating an image of a scene from sound. Our method addresses the challenges of dealing with the large gaps that often exist between sight and sound. We design a model that works by scheduling the learning procedure of each model component to associate audio-visual modalities despite their information gaps. The key idea is to enrich the audio features with visual information by learning to align audio to visual latent space. We translate the input audio to visual features, then use a pre-trained generator to produce an image. To further improve the quality of our generated images, we use sound source localization to select the audio-visual pairs that have strong cross-modal correlations. We obtain substantially better results on the VEGAS and VGGSound datasets than prior approaches. We also show that we can control our model’s predictions by applying simple manipulations to the input waveform, or to the latent space.
Paper26 VoxFormer: Sparse Voxel Transformer for Camera-Based 3D Semantic Scene Completion
摘要原文: Humans can easily imagine the complete 3D geometry of occluded objects and scenes. This appealing ability is vital for recognition and understanding. To enable such capability in AI systems, we propose VoxFormer, a Transformer-based semantic scene completion framework that can output complete 3D volumetric semantics from only 2D images. Our framework adopts a two-stage design where we start from a sparse set of visible and occupied voxel queries from depth estimation, followed by a densification stage that generates dense 3D voxels from the sparse ones. A key idea of this design is that the visual features on 2D images correspond only to the visible scene structures rather than the occluded or empty spaces. Therefore, starting with the featurization and prediction of the visible structures is more reliable. Once we obtain the set of sparse queries, we apply a masked autoencoder design to propagate the information to all the voxels by self-attention. Experiments on SemanticKITTI show that VoxFormer outperforms the state of the art with a relative improvement of 20.0% in geometry and 18.1% in semantics and reduces GPU memory during training to less than 16GB. Our code is available on https://github.com/NVlabs/VoxFormer.
摘要原文: Towards building comprehensive real-world visual perception systems, we propose and study a new problem called panoptic scene graph generation (PVSG). PVSG is related to the existing video scene graph generation (VidSGG) problem, which focuses on temporal interactions between humans and objects localized with bounding boxes in videos. However, the limitation of bounding boxes in detecting non-rigid objects and backgrounds often causes VidSGG systems to miss key details that are crucial for comprehensive video understanding. In contrast, PVSG requires nodes in scene graphs to be grounded by more precise, pixel-level segmentation masks, which facilitate holistic scene understanding. To advance research in this new area, we contribute a high-quality PVSG dataset, which consists of 400 videos (289 third-person + 111 egocentric videos) with totally 150K frames labeled with panoptic segmentation masks as well as fine, temporal scene graphs. We also provide a variety of baseline methods and share useful design practices for future work.
Paper28 Where We Are and What We’re Looking At: Query Based Worldwide Image Geo-Localization Using Hierarchies and Scenes
摘要原文: Determining the exact latitude and longitude that a photo was taken is a useful and widely applicable task, yet it remains exceptionally difficult despite the accelerated progress of other computer vision tasks. Most previous approaches have opted to learn single representations of query images, which are then classified at different levels of geographic granularity. These approaches fail to exploit the different visual cues that give context to different hierarchies, such as the country, state, and city level. To this end, we introduce an end-to-end transformer-based architecture that exploits the relationship between different geographic levels (which we refer to as hierarchies) and the corresponding visual scene information in an image through hierarchical cross-attention. We achieve this by learning a query for each geographic hierarchy and scene type. Furthermore, we learn a separate representation for different environmental scenes, as different scenes in the same location are often defined by completely different visual features. We achieve state of the art accuracy on 4 standard geo-localization datasets : Im2GPS, Im2GPS3k, YFCC4k, and YFCC26k, as well as qualitatively demonstrate how our method learns different representations for different visual hierarchies and scenes, which has not been demonstrated in the previous methods. Above previous testing datasets mostly consist of iconic landmarks or images taken from social media, which makes the dataset a simple memory task, or makes it biased towards certain places. To address this issue we introduce a much harder testing dataset, Google-World-Streets-15k, comprised of images taken from Google Streetview covering the whole planet and present state of the art results. Our code can be found at https://github.com/AHKerrigan/GeoGuessNet.
Paper29 Seeing With Sound: Long-range Acoustic Beamforming for Multimodal Scene Understanding
摘要原文: Existing autonomous vehicles primarily use sensors that rely on electromagnetic waves which are undisturbed in good environmental conditions but can suffer in adverse scenarios, such as low light or for objects with low reflectance. Moreover, only objects in direct line-of-sight are typically detected by these existing methods. Acoustic pressure waves emanating from road users do not share these limitations. However, such signals are typically ignored in automotive perception because they suffer from low spatial resolution and lack directional information. In this work, we introduce long-range acoustic beamforming of pressure waves from noise directly produced by automotive vehicles in-the-wild as a complementary sensing modality to traditional optical sensor approaches for detection of objects in dynamic traffic environments. To this end, we introduce the first multimodal long-range acoustic beamforming dataset. We propose a neural aperture expansion method for beamforming and we validate its utility for multimodal automotive object detection. We validate the benefit of adding sound detections to existing RGB cameras in challenging automotive scenarios, where camera-only approaches fail or do not deliver the ultra-fast rates of pressure sensors.
Paper30 OpenScene: 3D Scene Understanding With Open Vocabularies
摘要原文: Traditional 3D scene understanding approaches rely on labeled 3D datasets to train a model for a single task with supervision. We propose OpenScene, an alternative approach where a model predicts dense features for 3D scene points that are co-embedded with text and image pixels in CLIP feature space. This zero-shot approach enables task-agnostic training and open-vocabulary queries. For example, to perform SOTA zero-shot 3D semantic segmentation it first infers CLIP features for every 3D point and later classifies them based on similarities to embeddings of arbitrary class labels. More interestingly, it enables a suite of open-vocabulary scene understanding applications that have never been done before. For example, it allows a user to enter an arbitrary text query and then see a heat map indicating which parts of a scene match. Our approach is effective at identifying objects, materials, affordances, activities, and room types in complex 3D scenes, all using a single model trained without any labeled 3D data.
Paper31 Movies2Scenes: Using Movie Metadata To Learn Scene Representation
摘要原文: Understanding scenes in movies is crucial for a variety of applications such as video moderation, search, and recommendation. However, labeling individual scenes is a time-consuming process. In contrast, movie level metadata (e.g., genre, synopsis, etc.) regularly gets produced as part of the film production process, and is therefore significantly more commonly available. In this work, we propose a novel contrastive learning approach that uses movie metadata to learn a general-purpose scene representation. Specifically, we use movie metadata to define a measure of movie similarity, and use it during contrastive learning to limit our search for positive scene-pairs to only the movies that are considered similar to each other. Our learned scene representation consistently outperforms existing state-of-the-art methods on a diverse set of tasks evaluated using multiple benchmark datasets. Notably, our learned representation offers an average improvement of 7.9% on the seven classification tasks and 9.7% improvement on the two regression tasks in LVU dataset. Furthermore, using a newly collected movie dataset, we present comparative results of our scene representation on a set of video moderation tasks to demonstrate its generalizability on previously less explored tasks.
Paper32 Collaborative Noisy Label Cleaner: Learning Scene-Aware Trailers for Multi-Modal Highlight Detection in Movies
摘要原文: Movie highlights stand out of the screenplay for efficient browsing and play a crucial role on social media platforms. Based on existing efforts, this work has two observations: (1) For different annotators, labeling highlight has uncertainty, which leads to inaccurate and time-consuming annotations. (2) Besides previous supervised or unsupervised settings, some existing video corpora can be useful, e.g., trailers, but they are often noisy and incomplete to cover the full highlights. In this work, we study a more practical and promising setting, i.e., reformulating highlight detection as “learning with noisy labels”. This setting does not require time-consuming manual annotations and can fully utilize existing abundant video corpora. First, based on movie trailers, we leverage scene segmentation to obtain complete shots, which are regarded as noisy labels. Then, we propose a Collaborative noisy Label Cleaner (CLC) framework to learn from noisy highlight moments. CLC consists of two modules: augmented cross-propagation (ACP) and multi-modality cleaning (MMC). The former aims to exploit the closely related audio-visual signals and fuse them to learn unified multi-modal representations. The latter aims to achieve cleaner highlight labels by observing the changes in losses among different modalities. To verify the effectiveness of CLC, we further collect a large-scale highlight dataset named MovieLights. Comprehensive experiments on MovieLights and YouTube Highlights datasets demonstrate the effectiveness of our approach. Code has been made available at: https://github.com/TencentYoutuResearch/HighlightDetection-CLC
Paper33 Long Range Pooling for 3D Large-Scale Scene Understanding
摘要原文: Inspired by the success of recent vision transformers and large kernel design in convolutional neural networks (CNNs), in this paper, we analyze and explore essential reasons for their success. We claim two factors that are critical for 3D large-scale scene understanding: a larger receptive field and operations with greater non-linearity. The former is responsible for providing long range contexts and the latter can enhance the capacity of the network. To achieve the above properties, we propose a simple yet effective long range pooling (LRP) module using dilation max pooling, which provides a network with a large adaptive receptive field. LRP has few parameters, and can be readily added to current CNNs. Also, based on LRP, we present an entire network architecture, LRPNet, for 3D understanding. Ablation studies are presented to support our claims, and show that the LRP module achieves better results than large kernel convolution yet with reduced computation, due to its non-linearity. We also demonstrate the superiority of LRPNet on various benchmarks: LRPNet performs the best on ScanNet and surpasses other CNN-based methods on S3DIS and Matterport3D. Code will be avalible at https://github.com/li-xl/LRPNet.
Paper34 Towards Unified Scene Text Spotting Based on Sequence Generation
摘要原文: Sequence generation models have recently made significant progress in unifying various vision tasks. Although some auto-regressive models have demonstrated promising results in end-to-end text spotting, they use specific detection formats while ignoring various text shapes and are limited in the maximum number of text instances that can be detected. To overcome these limitations, we propose a UNIfied scene Text Spotter, called UNITS. Our model unifies various detection formats, including quadrilaterals and polygons, allowing it to detect text in arbitrary shapes. Additionally, we apply starting-point prompting to enable the model to extract texts from an arbitrary starting point, thereby extracting more texts beyond the number of instances it was trained on. Experimental results demonstrate that our method achieves competitive performance compared to state-of-the-art methods. Further analysis shows that UNITS can extract a larger number of texts than it was trained on. We provide the code for our method at https://github.com/clovaai/units.
摘要原文: The quality of scene graphs generated by the state-of-the-art (SOTA) models is compromised due to the long-tail nature of the relationships and their parent object pairs. Training of the scene graphs is dominated by the majority relationships of the majority pairs and, therefore, the object-conditional distributions of relationship in the minority pairs are not preserved after the training is converged. Consequently, the biased model performs well on more frequent relationships in the marginal distribution of relationships such as ‘on’ and ‘wearing’, and performs poorly on the less frequent relationships such as ‘eating’ or ‘hanging from’. In this work, we propose virtual evidence incorporated within-triplet Bayesian Network (BN) to preserve the object-conditional distribution of the relationship label and to eradicate the bias created by the marginal probability of the relationships. The insufficient number of relationships in the minority classes poses a significant problem in learning the within-triplet Bayesian network. We address this insufficiency by embedding-based augmentation of triplets where we borrow samples of the minority triplet classes from its neighboring triplets in the semantic space. We perform experiments on two different datasets and achieve a significant improvement in the mean recall of the relationships. We also achieve a better balance between recall and mean recall performance compared to the SOTA de-biasing techniques of scene graph models.
摘要原文: Generating realistic 3D worlds occupied by moving humans has many applications in games, architecture, and synthetic data creation. But generating such scenes is expensive and labor intensive. Recent work generates human poses and motions given a 3D scene. Here, we take the opposite approach and generate 3D indoor scenes given 3D human motion. Such motions can come from archival motion capture or from IMU sensors worn on the body, effectively turning human movement in a “scanner” of the 3D world. Intuitively, human movement indicates the free-space in a room and human contact indicates surfaces or objects that support activities such as sitting, lying or touching. We propose MIME (Mining Interaction and Movement to infer 3D Environments), which is a generative model of indoor scenes that produces furniture layouts that are consistent with the human movement. MIME uses an auto-regressive transformer architecture that takes the already generated objects in the scene as well as the human motion as input, and outputs the next plausible object. To train MIME, we build a dataset by populating the 3D FRONT scene dataset with 3D humans. Our experiments show that MIME produces more diverse and plausible 3D scenes than a recent generative scene method that does not know about human movement. Code and data will be available for research.
Paper37 pCON: Polarimetric Coordinate Networks for Neural Scene Representations
摘要原文: Neural scene representations have achieved great success in parameterizing and reconstructing images, but current state of the art models are not optimized with the preservation of physical quantities in mind. While current architectures can reconstruct color images correctly, they create artifacts when trying to fit maps of polar quantities. We propose polarimetric coordinate networks (pCON), a new model architecture for neural scene representations aimed at preserving polarimetric information while accurately parameterizing the scene. Our model removes artifacts created by current coordinate network architectures when reconstructing three polarimetric quantities of interest.
摘要原文: The task of dynamic scene graph generation (SGG) from videos is complicated and challenging due to the inherent dynamics of a scene, temporal fluctuation of model predictions, and the long-tailed distribution of the visual relationships in addition to the already existing challenges in image-based SGG. Existing methods for dynamic SGG have primarily focused on capturing spatio-temporal context using complex architectures without addressing the challenges mentioned above, especially the long-tailed distribution of relationships. This often leads to the generation of biased scene graphs. To address these challenges, we introduce a new framework called TEMPURA: TEmporal consistency and Memory Prototype guided UnceRtainty Attenuation for unbiased dynamic SGG. TEMPURA employs object-level temporal consistencies via transformer-based sequence modeling, learns to synthesize unbiased relationship representations using memory-guided training, and attenuates the predictive uncertainty of visual relations using a Gaussian Mixture Model (GMM). Extensive experiments demonstrate that our method achieves significant (up to 10% in some cases) performance gain over existing methods highlight- ing its superiority in generating more unbiased scene graphs. Code: https://github.com/sayaknag/unbiasedSGG.git
Paper39 Diffusion-Based Generation, Optimization, and Planning in 3D Scenes
摘要原文: We introduce SceneDiffuser, a conditional generative model for 3D scene understanding. SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning. In contrast to prior works, SceneDiffuser is intrinsically scene-aware, physics-based, and goal-oriented. With an iterative sampling strategy, SceneDiffuser jointly formulates the scene-aware generation, physics-based optimization, and goal-oriented planning via a diffusion-based denoising process in a fully differentiable fashion. Such a design alleviates the discrepancies among different modules and the posterior collapse of previous scene-conditioned generative models. We evaluate SceneDiffuser with various 3D scene understanding tasks, including human pose and motion generation, dexterous grasp generation, path planning for 3D navigation, and motion planning for robot arms. The results show significant improvements compared with previous models, demonstrating the tremendous potential of SceneDiffuser for the broad community of 3D scene understanding.
Paper40 Text2Scene: Text-Driven Indoor Scene Stylization With Part-Aware Details
摘要原文: We propose Text2Scene, a method to automatically create realistic textures for virtual scenes composed of multiple objects. Guided by a reference image and text descriptions, our pipeline adds detailed texture on labeled 3D geometries in the room such that the generated colors respect the hierarchical structure or semantic parts that are often composed of similar materials. Instead of applying flat stylization on the entire scene at a single step, we obtain weak semantic cues from geometric segmentation, which are further clarified by assigning initial colors to segmented parts. Then we add texture details for individual objects such that their projections on image space exhibit feature embedding aligned with the embedding of the input. The decomposition makes the entire pipeline tractable to a moderate amount of computation resources and memory. As our framework utilizes the existing resources of image and text embedding, it does not require dedicated datasets with high-quality textures designed by skillful artists. To the best of our knowledge, it is the first practical and scalable approach that can create detailed and realistic textures of the desired style that maintain structural context for scenes with multiple objects.
Paper41 Prototype-Based Embedding Network for Scene Graph Generation
摘要原文: Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs. However, due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category, e.g., “man-eating-pizza, giraffe-eating-leaf”, and the severe inter-class similarity between different classes, e.g., “man-holding-plate, man-eating-pizza”, in model’s latent space. The above challenges prevent current SGG methods from acquiring robust features for reliable relation prediction. In this paper, we claim that predicate’s categoryinherent semantics can serve as class-wise prototypes in the semantic space for relieving the above challenges caused by the diverse visual appearances. To the end, we propose the Prototype-based Embedding Network (PE-Net), which models entities/predicates with prototype-aligned compact and distinctive representations and establishes matching between entity pairs and predicates in a common embedding space for relation recognition. Moreover, Prototypeguided Learning (PL) is introduced to help PE-Net efficiently learn such entity-predicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching caused by the predicate’s semantic overlap. Extensive experiments demonstrate that our method gains superior relation recognition capability on SGG, achieving new state-of-the-art performances on both Visual Genome and Open Images datasets.
Paper42 I2-SDF: Intrinsic Indoor Scene Reconstruction and Editing via Raytracing in Neural SDFs
摘要原文: In this work, we present I^2-SDF, a new method for intrinsic indoor scene reconstruction and editing using differentiable Monte Carlo raytracing on neural signed distance fields (SDFs). Our holistic neural SDF-based framework jointly recovers the underlying shapes, incident radiance and materials from multi-view images. We introduce a novel bubble loss for fine-grained small objects and error-guided adaptive sampling scheme to largely improve the reconstruction quality on large-scale indoor scenes. Further, we propose to decompose the neural radiance field into spatially-varying material of the scene as a neural field through surface-based, differentiable Monte Carlo raytracing and emitter semantic segmentations, which enables physically based and photorealistic scene relighting and editing applications. Through a number of qualitative and quantitative experiments, we demonstrate the superior quality of our method on indoor scene reconstruction, novel view synthesis, and scene editing compared to state-of-the-art baselines. Our project page is at https://jingsenzhu.github.io/i2-sdf.
Paper43 Multi-View Inverse Rendering for Large-Scale Real-World Indoor Scenes
摘要原文: We present a efficient multi-view inverse rendering method for large-scale real-world indoor scenes that reconstructs global illumination and physically-reasonable SVBRDFs. Unlike previous representations, where the global illumination of large scenes is simplified as multiple environment maps, we propose a compact representation called Texture-based Lighting (TBL). It consists of 3D mesh and HDR textures, and efficiently models direct and infinite-bounce indirect lighting of the entire large scene. Based on TBL, we further propose a hybrid lighting representation with precomputed irradiance, which significantly improves the efficiency and alleviates the rendering noise in the material optimization. To physically disentangle the ambiguity between materials, we propose a three-stage material optimization strategy based on the priors of semantic segmentation and room segmentation. Extensive experiments show that the proposed method outperforms the state-of-the-art quantitatively and qualitatively, and enables physically-reasonable mixed-reality applications such as material editing, editable novel view synthesis and relighting. The project page is at https://lzleejean.github.io/TexIR.
Paper44 Hierarchical Semantic Contrast for Scene-Aware Video Anomaly Detection
摘要原文: Increasing scene-awareness is a key challenge in video anomaly detection (VAD). In this work, we propose a hierarchical semantic contrast (HSC) method to learn a scene-aware VAD model from normal videos. We first incorporate foreground object and background scene features with high-level semantics by taking advantage of pre-trained video parsing models. Then, building upon the autoencoder-based reconstruction framework, we introduce both scene-level and object-level contrastive learning to enforce the encoded latent features to be compact within the same semantic classes while being separable across different classes. This hierarchical semantic contrast strategy helps to deal with the diversity of normal patterns and also increases their discrimination ability. Moreover, for the sake of tackling rare normal activities, we design a skeleton-based motion augmentation to increase samples and refine the model further. Extensive experiments on three public datasets and scene-dependent mixture datasets validate the effectiveness of our proposed method.
Paper45 Fast Contextual Scene Graph Generation With Unbiased Context Augmentation
摘要原文: Scene graph generation (SGG) methods have historically suffered from long-tail bias and slow inference speed. In this paper, we notice that humans can analyze relationships between objects relying solely on context descriptions,and this abstract cognitive process may be guided by experience. For example, given descriptions of cup and table with their spatial locations, humans can speculate possible relationships < cup, on, table > or < table, near, cup >. Even without visual appearance information, some impossible predicates like flying in and looking at can be empirically excluded. Accordingly, we propose a contextual scene graph generation (C-SGG) method without using visual information and introduce a context augmentation method. We propose that slight perturbations in the position and size of objects do not essentially affect the relationship between objects. Therefore, at the context level, we can produce diverse context descriptions by using a context augmentation method based on the original dataset. These diverse context descriptions can be used for unbiased training of C-SGG to alleviate long-tail bias. In addition, we also introduce a context guided visual scene graph generation (CV-SGG) method, which leverages the C-SGG experience to guide vision to focus on possible predicates. Through extensive experiments on the publicly available dataset, C-SGG alleviates long-tail bias and omits the huge computation of visual feature extraction to realize real-time SGG. CV-SGG achieves a great trade-off between common predicates and tail predicates.
摘要原文: We extend neural radiance fields (NeRFs) to dynamic large-scale urban scenes. Prior work tends to reconstruct single video clips of short durations (up to 10 seconds). Two reasons are that such methods (a) tend to scale linearly with the number of moving objects and input videos because a separate model is built for each and (b) tend to require supervision via 3D bounding boxes and panoptic labels, obtained manually or via category-specific models. As a step towards truly open-world reconstructions of dynamic cities, we introduce two key innovations: (a) we factorize the scene into three separate hash table data structures to efficiently encode static, dynamic, and far-field radiance fields, and (b) we make use of unlabeled target signals consisting of RGB images, sparse LiDAR, off-the-shelf self-supervised 2D descriptors, and most importantly, 2D optical flow. Operationalizing such inputs via photometric, geometric, and feature-metric reconstruction losses enables SUDS to decompose dynamic scenes into the static background, individual objects, and their motions. When combined with our multi-branch table representation, such reconstructions can be scaled to tens of thousands of objects across 1.2 million frames from 1700 videos spanning geospatial footprints of hundreds of kilometers, (to our knowledge) the largest dynamic NeRF built to date. We present qualitative initial results on a variety of tasks enabled by our representations, including novel-view synthesis of dynamic urban scenes, unsupervised 3D instance segmentation, and unsupervised 3D cuboid detection. To compare to prior work, we also evaluate on KITTI and Virtual KITTI 2, surpassing state-of-the-art methods that rely on ground truth 3D bounding box annotations while being 10x quicker to train.
Paper47 Dionysus: Recovering Scene Structures by Dividing Into Semantic Pieces
摘要原文: Most existing 3D reconstruction methods result in either detail loss or unsatisfying efficiency. However, effectiveness and efficiency are equally crucial in real-world applications, e.g., autonomous driving and augmented reality. We argue that this dilemma comes from wasted resources on valueless depth samples. This paper tackles the problem by proposing a novel learning-based 3D reconstruction framework named Dionysus. Our main contribution is to find out the most promising depth candidates from estimated semantic maps. This strategy simultaneously enables high effectiveness and efficiency by attending to the most reliable nominators. Specifically, we distinguish unreliable depth candidates by checking the cross-view semantic consistency and allow adaptive sampling by redistributing depth nominators among pixels. Experiments on the most popular datasets confirm our proposed framework’s effectiveness.
Paper48 Advancing Visual Grounding With Scene Knowledge: Benchmark and Method
摘要原文: Visual grounding (VG) aims to establish fine-grained alignment between vision and language. Ideally, it can be a testbed for vision-and-language models to evaluate their understanding of the images and texts and their reasoning abilities over their joint space. However, most existing VG datasets are constructed using simple description texts, which do not require sufficient reasoning over the images and texts. This has been demonstrated in a recent study, where a simple LSTM-based text encoder without pretraining can achieve state-of-the-art performance on mainstream VG datasets. Therefore, in this paper, we propose a novel benchmark of Scene Knowledge-guided Visual Grounding (SK-VG), where the image content and referring expressions are not sufficient to ground the target objects, forcing the models to have a reasoning ability on the long-form scene knowledge. To perform this task, we propose two approaches to accept the triple-type input, where the former embeds knowledge into the image features before the image-query interaction; the latter leverages linguistic structure to assist in computing the image-text matching. We conduct extensive experiments to analyze the above methods and show that the proposed approaches achieve promising results but still leave room for improvement, including performance and interpretability.
Paper49 Learning To Fuse Monocular and Multi-View Cues for Multi-Frame Depth Estimation in Dynamic Scenes
摘要原文: Multi-frame depth estimation generally achieves high accuracy relying on the multi-view geometric consistency. When applied in dynamic scenes, e.g., autonomous driving, this consistency is usually violated in the dynamic areas, leading to corrupted estimations. Many multi-frame methods handle dynamic areas by identifying them with explicit masks and compensating the multi-view cues with monocular cues represented as local monocular depth or features. The improvements are limited due to the uncontrolled quality of the masks and the underutilized benefits of the fusion of the two types of cues. In this paper, we propose a novel method to learn to fuse the multi-view and monocular cues encoded as volumes without needing the heuristically crafted masks. As unveiled in our analyses, the multi-view cues capture more accurate geometric information in static areas, and the monocular cues capture more useful contexts in dynamic areas. To let the geometric perception learned from multi-view cues in static areas propagate to the monocular representation in dynamic areas and let monocular cues enhance the representation of multi-view cost volume, we propose a cross-cue fusion (CCF) module, which includes the cross-cue attention (CCA) to encode the spatially non-local relative intra-relations from each source to enhance the representation of the other. Experiments on real-world datasets prove the significant effectiveness and generalization ability of the proposed method.