python 霍夫曼解码

Huffman Tree 进行解码 示例图   

c语言:c语言 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)_霍夫曼的贪婪c语言-CSDN博客

c++:c++ 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)_霍夫曼的贪婪算法设计核心代码-CSDN博客

c#:C# 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

c++ STL:c++ STL 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

java:java 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

python:python 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

javascript:JavaScript 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

我们在之前的文章中 讨论了霍夫曼编码。在这篇文章中,我们将讨论解码。

例子:

输入数据: AAAAAABCCCCCCDDEEEEE
频率: A:6,B:1,C:6,D:2,E:5

编码数据: 00000000000011001010101010111111110101010

哈夫曼树: “#”是用于内部节点的特殊字符,因为
                         内部节点不需要字符字段。 

                    #(20)
                  / \
          #(12) #(8)
         / \ / \
     A(6) C(6) E(5) #(3)
                                 / \
                             B(1) D(2)  

‘A’ 的代码是 ‘00’,‘C’ 的代码是 ‘01’,..

解码数据: AAAAAAABCCCCCCDDEEEEE

输入数据: GeeksforGeeks

字符 频率为
e 10, f 1100, g 011, k 00, o 010, r 1101, s 111

编码的哈夫曼数据: 01110100011111000101101011101000111
解码的哈夫曼数据: geeksforgeeks

请按照以下步骤解决问题:

        注意:要解码编码数据,我们需要霍夫曼树。我们遍历二进制编码数据。要找到与当前位对应的字符,我们使用以下简单步骤:

        1、我们从根开始,依次进行,直到找到叶子。
        2、如果当前位为 0,我们就移动到树的左节点。
        3、如果该位为 1,我们移动到树的右节点。
        4、如果在遍历过程中遇到叶节点,我们会打印该特定叶节点的字符,然后再次从步骤 1 开始继续迭代编码数据。

        下面的代码将一个字符串作为输入,对其进行编码,并将其保存在变量编码字符串中。然后对其进行解码并打印原始字符串。 

下面是上述方法的实现:

import heapq
from collections import defaultdict
 
# to map each character its huffman value
codes = {}
 
# To store the frequency of character of the input data
freq = defaultdict(int)
 
# A Huffman tree node
class MinHeapNode:
    def __init__(self, data, freq):
        self.left = None
        self.right = None
        self.data = data
        self.freq = freq
 
    def __lt__(self, other):
        return self.freq < other.freq
 
# utility function to print characters along with
# there huffman value
def printCodes(root, str):
    if root is None:
        return
    if root.data != '$':
        print(root.data, ":", str)
    printCodes(root.left, str + "0")
    printCodes(root.right, str + "1")
 
# utility function to store characters along with
# there huffman value in a hash table
def storeCodes(root, str):
    if root is None:
        return
    if root.data != '$':
        codes[root.data] = str
    storeCodes(root.left, str + "0")
    storeCodes(root.right, str + "1")
 
# function to build the Huffman tree and store it
# in minHeap
def HuffmanCodes(size):
    global minHeap
    for key in freq:
        minHeap.append(MinHeapNode(key, freq[key]))
    heapq.heapify(minHeap)
    while len(minHeap) != 1:
        left = heapq.heappop(minHeap)
        right = heapq.heappop(minHeap)
        top = MinHeapNode('$', left.freq + right.freq)
        top.left = left
        top.right = right
        heapq.heappush(minHeap, top)
    storeCodes(minHeap[0], "")
 
# utility function to store map each character with its
# frequency in input string
def calcFreq(str, n):
    for i in range(n):
        freq[str[i]] += 1
 
# function iterates through the encoded string s
# if s[i]=='1' then move to node->right
# if s[i]=='0' then move to node->left
# if leaf node append the node->data to our output string
def decode_file(root, s):
    ans = ""
    curr = root
    n = len(s)
    for i in range(n):
        if s[i] == '0':
            curr = curr.left
        else:
            curr = curr.right
 
        # reached leaf node
        if curr.left is None and curr.right is None:
            ans += curr.data
            curr = root
    return ans + '\0'
 
# Driver code
if __name__ == "__main__":
    minHeap = []
    str = "geeksforgeeks"
    encodedString, decodedString = "", ""
    calcFreq(str, len(str))
    HuffmanCodes(len(str))
    print("Character With there Frequencies:")
    for key in sorted(codes):
        print(key, codes[key])
 
    for i in str:
        encodedString += codes[i]
 
    print("\nEncoded Huffman data:")
    print(encodedString)
 
    # Function call
    decodedString = decode_file(minHeap[0], encodedString)
    print("\nDecoded Huffman Data:")
    print(decodedString)

输出:
具有以下频率的字符:

e 10
f 1100
g 011
k 00
o 010
r 1101
s 111

编码的哈夫曼数据:
01110100011111000101101011101000111

解码的哈夫曼数据:
geeksforgeeks

时间复杂度:

        霍夫曼编码算法的时间复杂度为O(n log n),其中n为输入字符串的字符个数。辅助空间复杂度也是O(n),其中n为输入字符串的字符个数。

        在给定的 C++ 实现中,时间复杂度主要由使用优先级队列创建 Huffman 树决定,这需要 O(n log n) 时间。空间复杂度主要由用于存储字符频率和代码的映射决定,这需要 O(n) 空间。用于打印代码和存储代码的递归函数也增加了空间复杂度。

比较输入文件大小和输出文件大小: 
        比较输入文件大小和霍夫曼编码的输出文件。我们可以用一种简单的方法计算输出数据的大小。假设我们的输入是一个字符串“geeksforgeeks”,存储在文件 input.txt 中。 

输入文件大小:

输入: “geeksforgeeks”
字符总数即输入长度:13
大小: 13 个字符出现次数 * 8 位 = 104 位或 13 个字节。

输出文件大小:

输入: “geeksforgeeks”

——————————————————
字符 | 频率 | 二进制哈夫曼值 |
——————————————————

   e | 4 | 10 |
   f | 1 | 1100 |   
   g | 2 | 011 |
   k | 2 | 00 |
   o | 1 | 010 |
   r | 1 | 1101 |
   s | 2 | 111 | 

—————————————————

因此要计算输出大小:

e:出现 4 次 * 2 位 = 8 位
f:出现 1 次 * 4 位 = 4 位
g:出现 2 次 * 3 位 = 6 位
k:出现 2 次 * 2 位 = 4 位
o:出现 1 次 * 3 位 = 3 位
r:出现 1 次 * 4 位 = 4 位
s:出现 2 次 * 3 位 = 6 位

总和: 35 位,约 5 字节

        由此可见,编码后的数据量是比较大的,上面的方法也可以帮我们确定N的值,也就是编码后数据的长度。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/728648.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

适用于所有 Android 手机的 8 大 Android 解锁工具

有时您无法解锁手机&#xff0c;因为您忘记了密码或设备停止响应解锁图案。不要惊慌。我们在这里为您列出了最好的 Android 解锁工具。只需选择一个您喜欢的。 为了保护重要数据&#xff0c;许多手机用户倾向于使用图案锁、密码、指纹甚至面部识别来锁定设备。但有时&#xff…

docker 配置与使用

目录 安装docker 作者遇到的问题1&#xff1a;安装docker 错误说明 解决方法&#xff1a; 作者遇到问题2&#xff1a;GPG密钥问题 问题说明 解决方法&#xff1a; 方法一&#xff1a;使用备用的GPG密钥服务器 方法二&#xff1a;使用国内镜像源 方法3&#xff1a;手动下…

关于IntelliJ IDEA 2024.1版本更新的问题

希望文章能给到你启发和灵感&#xff5e; 感谢支持和关注&#xff5e; 阅读指南 序幕一、基础环境说明1.1 硬件环境1.2 软件环境 二、起因三、解决四、总结 序幕 近期&#xff0c;IntelliJ IDEA 推出了全新2024版本&#xff0c;相信很多编程的爱好者或者刚接触编程的小伙伴都会…

论文阅读--Cross-view Transformers for real-time Map-view Semantic Segmentation

一种新的2D维度的bev特征提取方案&#xff0c;其通过引入相机先验信息&#xff08;相机内参和外参&#xff09;构建了一个多视图交叉注意力机制&#xff0c;能够将多视图特征映射为BEV特征。 cross view attention&#xff1a;BEV位置编码由根据相机标定结果&#xff08;内参和…

工业制造领涉及的8大常见管理系统,如mes、scada、aps、wms等

在工业生产和制造领域有一些常见的管理系统&#xff0c;很多小伙伴分不清&#xff0c;这次大美B端工场带领大家了解清楚。 MES&#xff08;Manufacturing Execution System&#xff0c;制造执行系统&#xff09;&#xff1a; MES是一种用于监控、控制和优化生产过程的软件系统…

商超仓库管理系统

摘要 随着全球经济和互联网技术的快速发展&#xff0c;依靠互联网技术的各种管理系统逐渐应用到社会的方方面面。各行业的有识之士都逐渐开始意识到过去传统的人工管理模式已经逐渐成为企业发展的绊脚石&#xff0c;不再适应现代企业的发展需要。企业想要得到更好的发展&#…

异地如何共享视频文件?

人们对于信息流动的需求越来越高。尤其在分布式团队合作、远程办公的背景下&#xff0c;异地共享视频文件成为了一项重要的技术需求。本文将介绍一款名为【天联】的组网产品&#xff0c;它能够实现不同地区间快速组建局域网&#xff0c;解决不同设备间的信息远程通信问题。 2.…

【C++题解】1741 - 求出1~n中满足条件的数的个数和总和?

问题&#xff1a;1741 - 求出1~n中满足条件的数的个数和总和&#xff1f; 类型&#xff1a;简单循环 题目描述&#xff1a; 请求出 1∼n 之间所有满足 2 的倍数但不是 3 的倍数的数&#xff0c;有多少个&#xff0c;总和是多少&#xff1f; 输入&#xff1a; 读入一个整数 …

【SpringMVC】第1-7章

第1章 初始SpringMVC 1.1 学习本套教程前的知识储备 JavaSEHTMLCSSJavaScriptVueAJAX axiosThymeleafServletMavenSpring 1.2 什么是MVC MVC架构模式相关课程&#xff0c;在老杜的JavaWeb课程中已经详细的讲解了&#xff0c;如果没有学过的&#xff0c;可以看这个视频&…

PostgreSQL的学习心得和知识总结(一百四十六)|深入理解PostgreSQL数据库之客户端侧auto savepoint的使用和实现

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《PostgreSQL数据库内核分析》 2、参考书籍&#xff1a;《数据库事务处理的艺术&#xff1a;事务管理与并发控制》 3、PostgreSQL数据库仓库…

计算机网络:应用层 - 文件传输协议 FTP 电子邮件

计算机网络&#xff1a;应用层 - 文件传输协议 FTP & 电子邮件 文件传输协议 FTP电子邮件 文件传输协议 FTP 文件传送协议 FTP(File Transfer Protocol)&#xff0c;曾是互联网祝频讲解上使用得最广泛的文件传送协议。 其特点是&#xff1a;若要存取一个文件&#xff0c;…

前端基础操作1——利用nvm任意切换(管理)node版本

在实际前端项目开发过程中&#xff0c;同时开发多个项目或者切换新项目时&#xff0c;因为node版本问题造成项目无法运行的问题比比皆是&#xff0c;这时候通过nvm管理切换不同版本的node&#xff0c;就能很快进入开发模式&#xff0c;避免因为环境问题浪费大量精力&#xff0c…

hive on spark 的架构和常见问题 - hive on spark 使用的是 yarn client 模式还是 yarn cluster 模式?

hive on spark 的架构和常见问题 - hive on spark 使用的是 yarn client 模式还是 yarn cluster 模式&#xff1f; 1. 回顾下 spark 的架构图和部署模式 来自官方的经典的 spark 架构图如下&#xff1a; 上述架构图&#xff0c;从进程的角度来讲&#xff0c;有四个角色/组件&…

[C++][数据结构][B-树][上]详细讲解

目录 0.常见的搜索结构1.B树概念2.B-树的插入分析1.流程分析2.插入过程总结 0.常见的搜索结构 种类数据格式时间复杂度顺序查找无要求 O ( N ) O(N) O(N)二分查找有序 O ( l o g 2 N ) O(log_2 N) O(log2​N)二叉搜索树无要求 O ( N ) O(N) O(N)二叉平衡树无要求 O ( l o g 2 …

20212416 2023-2024-2 《移动平台开发与实践》综合实践

移动平台开放综合实践 1.实验内容2.实验过程2.1 确定基础功能2.2 设计UI界面2.3 编写程序运行代码2.4 在基本功能的基础上丰富功能 3. 代码分析3.1设置按钮的点击事件监听器3.2 比分更新模块3.3 比分存储模块 4. 运行结果5.实践中遇到的问题及解决6.学习感悟与思考参考资料 1.实…

k8s中 docker和containerd 镜像相互导入导出

containerd镜像导出并导入docker 1 查看containerd 本地镜像列表 crictl images 2 containerd 导出本地镜像到当前目录下&#xff08;注意&#xff1a; 导出导入需要指定镜像平台类型 --platform&#xff09; ctr -n k8s.io images export nacos-server-24-06-30-13-02-…

【windows|007】DHCP服务详解

&#x1f341;博主简介&#xff1a; &#x1f3c5;云计算领域优质创作者 &#x1f3c5;2022年CSDN新星计划python赛道第一名 &#x1f3c5;2022年CSDN原力计划优质作者 ​ &#x1f3c5;阿里云ACE认证高级工程师 ​ &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社…

在阿里云服务器Linux系统上从头到尾实现Webapp的部署(安装卸载JDK、安装Tomcat、安装配置MySQL)

输入yum list | grep jdk 选择 devel是软件包中的典型命名格式 devel表示这个包是开发工具相关的 里面包含内容是最完整的 x86表示cpu架构是x86_64 还有openjdk表示开源版本 输入yum install java-1.8.0-openjdk-devel.x86_64 开始下载 遇到问你 is this ok? 输入y表示ok 输…

计算机网络期末复习——简明扼要介绍考点及相关知识

期末复习的方法论&#xff1a;一般来说&#xff0c;期末复习都是“理论”结合“实践”。 理论&#xff0c;在于要对期末考点有基本的把握。可以询问老师或者师兄&#xff0c;总之要知道考试的重点在哪里。对照教材&#xff0c;勾画考试重点&#xff0c;删去不重要的琐碎知识点。…

【机器学习】深度学习赋能:基于 LSTM 的智能日志异常检测

目录 1. LSTM 简介 2. 日志序列异常检测概述 3. 数据预处理 3.1 日志解析 3.2 数据清洗 3.3 序列化 3.4 特征提取 示例代码 4. 构建 LSTM 模型 4.1 模型结构 4.2 模型构建示例 5. 训练 LSTM 模型 5.1 数据准备 5.2 模型训练 示例代码 6. 异常检测 6.1 异常分数…