Matlab数学建模实战应用:案例2 - 传染病传播

目录

前言

一、问题分析

二、模型建立

三、Matlab代码实现

四、模型验证

灵敏度分析

五、模型应用

实例总结

总结


前言

传染病传播模型是公共卫生和流行病学的重要研究内容,通过数学建模可以帮助我们理解传染病的传播规律和趋势,以便制定有效的防控策略。本文将详细介绍一个传染病传播案例,包括问题分析、模型建立、Matlab代码实现、模型验证和模型应用。

一、问题分析

  1. 传染病传播途径

    • 传染病通过直接接触、空气传播、飞沫传播等途径在人群中传播。
  2. 影响因素

    • 传染率(β):指每个传染者在单位时间内使易感者受感染的平均次数。
    • 治愈率(γ):指每个感染者在单位时间内恢复或死亡的概率。
    • 人口结构、社会活动、卫生条件等也对传播过程有影响。
  3. 预测目标

    • 建立数学模型,模拟传染病在特定人群中的传播过程,预测未来感染者和恢复者人数。

二、模型建立

以下表格总结了SIR和SEIR模型的基本特点:

模型类型组分主要参数微分方程
SIR模型易感者 (S)传染率 (β), 治愈率 (γ)
 
SEIR模型易感者 (S), 潜伏期 (E)传染率 (β), 治愈率 (γ),潜伏期转化率 (σ)

 

三、Matlab代码实现

以下是使用Matlab模拟SIR和SEIR模型的完整代码示例。

  1. SIR模型

1.1 定义和初始化参数:

% SIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
N = 1000;     % 总人口
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - I0 - R0; % 初始易感者

% 定义微分方程
sir_model = @(t, y) [
    -beta * y(1) * y(2) / N; 
    beta * y(1) * y(2) / N - gamma * y(2); 
    gamma * y(2)
];

% 初始条件
y0 = [S0, I0, R0];

% 求解微分方程
[t, y] = ode45(sir_model, [0, 160], y0);

% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'r', 'LineWidth', 2);
plot(t, y(:,3), 'g', 'LineWidth', 2);
legend('Susceptible', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SIR Model');
grid on;
  1. SEIR模型

2.1 定义和初始化参数:

% SEIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
sigma = 0.2;  % 潜伏期转化率
N = 1000;     % 总人口
E0 = 0;       % 初始潜伏者
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - E0 - I0 - R0; % 初始易感者

% 定义微分方程
seir_model = @(t, y) [
    -beta * y(1) * y(3) / N;
    beta * y(1) * y(3) / N - sigma * y(2);
    sigma * y(2) - gamma * y(3);
    gamma * y(3)
];

% 初始条件
y0 = [S0, E0, I0, R0];

% 求解微分方程
[t, y] = ode45(seir_model, [0, 160], y0);

% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'm', 'LineWidth', 2);
plot(t, y(:,3), 'r', 'LineWidth', 2);
plot(t, y(:,4), 'g', 'LineWidth', 2);
legend('Susceptible', 'Exposed', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SEIR Model');
grid on;

四、模型验证

我们可以通过以下几方面验证模型的合理性:

  1. 使用实际数据验证模型
    • 收集实际疾病传播数据,将其与模型预测结果进行比较,计算均方误差(MSE)和平均绝对误差(MAE)等指标。

    % 假设有一个实际数据集 actual_data
    [actual_time, actual_infected] = load('actual_data.mat');

    % 插值实际数据,使其与模型时间点对齐
    actual_infected_interp = interp1(actual_time, actual_infected, t);

    % 计算误差
    MAE = mean(abs(actual_infected_interp - y(:,2)));
    MSE = mean((actual_infected_interp - y(:,2)).^2);

    disp(['Mean Absolute Error: ', num2str(MAE)]);
    disp(['Mean Squared Error: ', num2str(MSE)]);
灵敏度分析

灵敏度分析涉及对模型的主要参数进行调整,并观察这些变化对模型结果的影响。以下是对传染率(β)和治愈率(γ)进行灵敏度分析的实现示例。

  1. 分析传染率(β)的变化

% 修改beta参数
beta_values = [0.2, 0.3, 0.4];
figure;
for i = 1:length(beta_values)
    beta = beta_values(i);
    sir_model = @(t, y) [
        -beta * y(1) * y(2) / N;
        beta * y(1) * y(2) / N - gamma * y(2);
        gamma * y(2)
    ];
    [t, y] = ode45(sir_model, [0, 160], y0);
    plot(t, y(:,2), 'LineWidth', 2);
    hold on;
end
legend('β=0.2', 'β=0.3', 'β=0.4', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Infection Rate (β)');
grid on;

  1. 分析治愈率(γ)的变化

% 修改gamma参数
gamma_values = [0.05, 0.1, 0.15];
figure;
for i = 1:length(gamma_values)
    gamma = gamma_values(i);
    sir_model = @(t, y) [
        -beta * y(1) * y(2) / N;
        beta * y(1) * y(2) / N - gamma * y(2);
        gamma * y(2)
    ];
    [t, y] = ode45(sir_model, [0, 160], y0);
    plot(t, y(:,2), 'LineWidth', 2);
    hold on;
end
legend('γ=0.05', 'γ=0.1', 'γ=0.15', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Recovery Rate (γ)');
grid on;

通过灵敏度分析,我们可以发现不同的传染率和治愈率对感染者人数和传播曲线的影响。这有助于决策者理解在不同条件下疫情的可能发展趋势,并采取更为针对性的干预措施。

五、模型应用

传染病模型不仅能够对疫情发展进行预测,还能够用于疫情防控和政策制定。以下是模型应用的几个方面:

  1. 疫情趋势预测
    • 使用SIR或SEIR模型进行未来的疫情发展预测,帮助公共卫生部门提前做好应对措施。

    % 使用SEIR模型预测未来疫情趋势
    future_time_span = [0, 300];
    [t_future, y_future] = ode45(seir_model, future_time_span, y0);
    
    % 绘制预测结果
    figure;
    plot(t_future, y_future(:,1), 'b', 'LineWidth', 2);
    hold on;
    plot(t_future, y_future(:,2), 'm', 'LineWidth', 2);
    plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);
    plot(t_future, y_future(:,4), 'g', 'LineWidth', 2);
    legend('Susceptible', 'Exposed', 'Infected', 'Recovered');
    xlabel('Time (days)');
    ylabel('Number of People');
    title('SEIR Model - Long Term Prediction');
    grid on;

  1. 政策效果评估
    • 模型可以用于评估不同防控措施的效果,例如隔离政策、疫苗接种等,通过模拟不同措施下的疫情发展,找到最优方案。

    % 模拟隔离措施的效果(降低传染率)
    beta_quarantine = 0.1;  % 采取隔离措施后的传染率
    seir_model_quarantine = @(t, y) [
        -beta_quarantine * y(1) * y(3) / N;
        beta_quarantine * y(1) * y(3) / N - sigma * y(2);
        sigma * y(2) - gamma * y(3);
        gamma * y(3)
    ];
    
    [t_quarantine, y_quarantine] = ode45(seir_model_quarantine, future_time_span, y0);
    
    % 绘制对比图
    figure;
    plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);  % 无隔离的感染者曲线
    hold on;
    plot(t_quarantine, y_quarantine(:,3), 'b', 'LineWidth', 2);  % 隔离的感染者曲线
    legend('No Quarantine', 'With Quarantine');
    xlabel('Time (days)');
    ylabel('Number of Infected People');
    title('Impact of Quarantine on Infection Spread');
    grid on;

  1. 医疗资源配置
    • 根据预测结果,合理配置医疗资源,如病床、医护人员、药品等,以应对疫情高峰期的需求。

    % 预测未来某一时期的重症患者人数(假设 10% 的感染者会成为重症)
    severe_case_ratio = 0.1;
    predicted_severe_cases = y_future(:,3) * severe_case_ratio;
    
    % 绘制重症患者人数预测图
    figure;
    plot(t_future, predicted_severe_cases, 'r', 'LineWidth', 2);
    xlabel('Time (days)');
    ylabel('Number of Severe Cases');
    title('Prediction of Severe Cases');
    grid on;

实例总结

通过上述步骤和实例,我们展示了如何使用SIR和SEIR模型模拟传染病传播的全过程,包括模型建立、灵敏度分析、模型验证和应用。以下是该实例总结:

步骤说明示例代码
问题分析分析传染病的传播途径及影响因素-
模型建立建立SIR和SEIR模型sir_model = @(t, y) ...
数据导入定义模型参数和初始条件beta = 0.3; gamma = 0.1; N = 1000;
模型训练使用微分方程求解器求解模型[t, y] = ode45(sir_model, [0, 160], y0);
模型验证使用实际数据验证模型,进行灵敏度分析actual_databeta_valuesgamma_values
模型应用预测疫情趋势,评估防控政策效果,合理配置医疗资源future_time_spanbeta_quarantine

总结

本文详细介绍了如何使用Matlab进行传染病传播建模,包括SIR和SEIR模型的建立、代码实现、灵敏度分析和模型验证。通过实际案例,我们展示了如何将传染病模型应用于疫情预测、政策效果评估和医疗资源配置等方面。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/727104.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

多组学双疾病串扰怎么做?PAN-AD九个机器学习+MR+单细胞,工作量不少

说在前面 “串扰”这个名词听起来高级了一个level,其实就是MR-通路的双疾病联合分析。虽然是筛选标志物的思路,但是工作量不小,作者还收集了13个不同AD自身免疫疾病数据集用于验证自己的机器学习模型,分析就是一些常规的WGCNA、P…

VMware虚拟机三种网络模式设置 - NAT(网络地址转换模式)

一、前言 在前一篇《Bridged(桥接模式)》中,我详细介绍了虚拟机网络模式设置中的桥接模式。今天详细讲解一下NAT(网络地址转换模式)。 在虚拟机(VM)中,NAT(Network Addre…

CSS--解决图片变形的方法

原文网址:CSS--解决图片变形的方法_IT利刃出鞘的博客-CSDN博客 简介 本文介绍html文件中图片变形的解决方法。 问题描述 我们经常需要指定所有图片的大小,让它们排列起来时看起来更整齐。但是,如果我们指定了width和height,那…

使用Harbor搭建局域网私有docker镜像库

说明:本文只介绍使用http的方式访问Harbor镜像库,https访问的方式请自行查询。 一、安装harbo 前提条件:已安装好docker。 1.1、安装docker-compose sudo apt install docker-compose1.2、下载Harbor 从Harbor的官方github,下载…

聊聊探索性测试

探索性测试定义及来源:​ 特意度娘了一下,探索性测试的定义: 探索性测试可以说是一种测试思维技术。它没有很多实际的测试方法、技术和工具,但是却是所有测试人员都应该掌握的一种测试思维方式。探索性强调测试人员的主观能动性…

使用opencv合并两个图像

本节的目的 linear blending(线性混合)使用**addWeighted()**来添加两个图像 原理 (其实我也没太懂,留个坑,感觉本科的时候线代没学好。不对,我本科就没学线代。) 源码分析 源码链接 #include "opencv2/imgc…

Python-gui开发之Pycharm+pyside6/Pyqt6环境搭建

Python-gui开发之Pycharm+pyside6/Pyqt6环境搭建 软件版本一、软件安装1、Python安装2、Pycharm安装3、pyside6或pyqt6安装①安装pyside6②安装PyQt6和pyqt6-tools二、Pycharm项目配置1、插件安装2、新建项目以及环境配置3、包管理安装三、在Pycharm中配置PySide61、pyside6 Qt…

MySQL功能测试-之应用工程

MySQL功能测试-之应用工程 前言pom.xmlapplication.yml 文件common.vo 包ResultVO config 包properties 包DruidConfigPropertyDruidMonitorProperty AutoFillMetaObjectHandlerDruidConfigFluxConfigurationMyBatisPlusConfig controller 包ClientControllerDruidControllerWe…

人工智能产品经理,行业巨头争夺的稀缺人才

前言 在当今这个由数据驱动的时代,人工智能(AI)正迅速成为推动各行各业创新的核心力量。随着行业巨头纷纷布局人工智能领域,对于专业人才的需求也日益增长。特别是人工智能产品经理这一岗位,缺口高达6.8万&#xff0c…

[机器学习算法] Q学习

Q学习(Q-Learning)是一种基于值的强化学习算法,用于在给定状态下选择动作,以最大化累积奖励。它通过不断更新一个称为Q表(Q-table)的表来学习动作的价值。 一、理解基本概念 状态 (State, S) 这是环境的…

戏剧之家杂志戏剧之家杂志社戏剧之家编辑部2024年第14期目录

文艺评论 南戏瓯剧跨文化传播研究 陈晓东;高阳;许赛梦; 3-7 论互联网时代的戏剧传播与批评——以西法大剧社和南山剧社为例 邬慧敏; 8-10 “左手荒诞,右手温情”——《西西弗神话》在戏剧《第七天》中的接受探究 赵稳稳; 11-13 戏剧研讨《戏剧之家》投稿…

计算机毕业设计师hadoop+spark+hive知识图谱医生推荐系统 医生数据分析可视化大屏 医生爬虫 医疗可视化 医生大数据 机器学习 大数据毕业设计

流程: 1.Python爬虫采集中华健康网约10万医生数据,最终存入mysql数据库; 2.使用pandasnumpy/hadoopmapreduce对mysql中的医生数据进行数据分析,使用高德地图解析地理位置,并将结果转入.csv文件同时上传到hdfs文件系统&…

Github生成Personal access tokens及在git中使用

目录 生成Token 使用Token-手工修改 使用Token-自动 生成Token 登录GitHub,在GitHub右上角点击个人资料头像,点击Settings → Developer Settings → Personal access tokens (classic)。 在界面上选择点击【Generate new token】,填写如…

西米支付:【风控升级】同一商户集中交易,将会限制正常用卡

支付公司风控策略再升级!近日,有某支付公司代理透漏,客户反馈机器突然不能刷卡了,换卡也无法交易,交易均提示06-超出商户限额,然而该款机器刷卡限额为单日30万,单月300万,客户并未触…

ctr/cvr预估之FM模型

ctr/cvr预估之FM模型 在数字化时代,广告和推荐系统的质量直接影响着企业的营销成效和用户体验。点击率(CTR)和转化率(CVR)预估作为这些系统的核心组件,其准确性至关重要。传统的机器学习方法,如…

怎么把答案去掉打印?超详细步骤告诉你!

在数字化教育日益普及的今天,我们时常需要在电子试卷和纸质试卷之间进行转换。然而,许多时候我们并不需要答案部分,这就需要我们掌握一些工具来去除答案,以便打印出纯净的试卷。本文将为您详细介绍如何使用试卷星、拍试卷以及WPS …

如何避免群发引起反感?

微信群发信息引起反感主要是因为缺乏情感,尽管最初微信群发旨在传递有价值信息,但由于滥用,现在人们对其印象非常负面。但是,还是有办法挽救的! 群发消息时按照这3个标准发,可以避免被反感。 1、短信群发目…

SDK编译IO Domain电压选择

开源鸿蒙硬件方案领跑者 触觉智能 本文适用于在Purple Pi OH开发板进行分区镜像烧录。触觉智能的Purple Pi OH鸿蒙开源主板,是华为Laval官方社区主荐的一款鸿蒙开发主板。 该主板主要针对学生党,极客,工程师,极大降低了开源鸿蒙…

MEMS六轴陀螺仪工作原理介绍

MEMS(微机电系统)六轴陀螺仪主要包括三轴陀螺仪和三轴加速度计,以下是其工作原理的简要介绍: 三轴陀螺仪工作原理: 陀螺仪利用科里奥利力原理来测量角速度。它通常有一个可振动的质量…

VScode开发ARM环境搭建

1. vscode安装 直接访问官网: Visual Studio Code - Code Editing. Redefined 2. 安装插件 2.1. 安装Embedded IDE 2.2. 安装Cortex-debug 3. 工程初始化 3.1. 导入现有工程(推荐) 3.2. 或可创建新的工程 3.2.1. 选择Cortex-M项目 指定项目名称&…