YOLOv5、YOLOv8改进:MobileViT:轻量通用且适合移动端的视觉Transformer

MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer

论文:https://arxiv.org/abs/2110.02178

e1a87d4eb4a90e532c099f743d822b53.png

 1简介

MobileviT是一个用于移动设备的轻量级通用可视化Transformer,据作者介绍,这是第一次基于轻量级CNN网络性能的轻量级ViT工作,性能SOTA!。性能优于MobileNetV3、CrossviT等网络。

轻量级卷积神经网络(CNN)是移动视觉任务的实际应用。他们的空间归纳偏差允许他们在不同的视觉任务中以较少的参数学习表征。然而,这些网络在空间上是局部的。为了学习全局表征,采用了基于自注意力的Vision Transformer(ViTs)。与CNN不同,ViT是heavy-weight。

在本文中,本文提出了以下问题:是否有可能结合CNN和ViT的优势,构建一个轻量级、低延迟的移动视觉任务网络?

为此提出了MobileViT,一种轻量级的、通用的移动设备Vision Transformer。MobileViT提出了一个不同的视角,以Transformer作为卷积处理信息。

98d3914f64b8e17da85f833084a6d45e.png

 

实验结果表明,在不同的任务和数据集上,MobileViT显著优于基于CNN和ViT的网络。

在ImageNet-1k数据集上,MobileViT在大约600万个参数的情况下达到了78.4%的Top-1准确率,对于相同数量的参数,比MobileNetv3和DeiT的准确率分别高出3.2%和6.2%。

在MS-COCO目标检测任务中,在参数数量相近的情况下,MobileViT比MobileNetv3的准确率高5.7%。

2.Mobile-ViT

MobileViT Block如下图所示,其目的是用较少的参数对输入张量中的局部和全局信息进行建模。

形式上,对于一个给定的输入张量, MobileViT首先应用一个n×n标准卷积层,然后用一个一个点(或1×1)卷积层产生特征。n×n卷积层编码局部空间信息,而点卷积通过学习输入通道的线性组合将张量投影到高维空间(d维,其中d>c)。

 

通过MobileViT,希望在拥有有效感受野的同时,对远距离非局部依赖进行建模。一种被广泛研究的建模远程依赖关系的方法是扩张卷积。然而,这种方法需要谨慎选择膨胀率。否则,权重将应用于填充的零而不是有效的空间区域。

另一个有希望的解决方案是Self-Attention。在Self-Attention方法中,具有multi-head self-attention的vision transformers(ViTs)在视觉识别任务中是有效的。然而,vit是heavy-weight,并由于vit缺乏空间归纳偏差,表现出较差的可优化性。

下面附上改进代码

---------------------------------------------分割线--------------------------------------------------

在common中加入如下代码

需要安装一个einops模块

pip --default-timeout=5000 install -i https://pypi.tuna.tsinghua.edu.cn/simple einops

这边建议直接兴建一个 

 

import torch
import torch.nn as nn

from einops import rearrange


def conv_1x1_bn(inp, oup):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm2d(oup),
        nn.SiLU()
    )


def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
    return nn.Sequential(
        nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
        nn.SiLU()
    )


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    
    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        qkv = self.to_qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h = self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        attn = self.attend(dots)
        out = torch.matmul(attn, v)
        out = rearrange(out, 'b p h n d -> b p n (h d)')
        return self.to_out(out)


class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
            ]))
    
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x


class MV2Block(nn.Module):
    def __init__(self, inp, oup, stride=1, expansion=4):
        super().__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(inp * expansion)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expansion == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileViTBlock(nn.Module):
    def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
        super().__init__()
        self.ph, self.pw = patch_size

        self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
        self.conv2 = conv_1x1_bn(channel, dim)

        self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)

        self.conv3 = conv_1x1_bn(dim, channel)
        self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
    
    def forward(self, x):
        y = x.clone()

        # Local representations
        x = self.conv1(x)
        x = self.conv2(x)
        
        # Global representations
        _, _, h, w = x.shape
        x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
        x = self.transformer(x)
        x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)

        # Fusion
        x = self.conv3(x)
        x = torch.cat((x, y), 1)
        x = self.conv4(x)
        return x


class MobileViT(nn.Module):
    def __init__(self, image_size, dims, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2)):
        super().__init__()
        ih, iw = image_size
        ph, pw = patch_size
        assert ih % ph == 0 and iw % pw == 0

        L = [2, 4, 3]

        self.conv1 = conv_nxn_bn(3, channels[0], stride=2)

        self.mv2 = nn.ModuleList([])
        self.mv2.append(MV2Block(channels[0], channels[1], 1, expansion))
        self.mv2.append(MV2Block(channels[1], channels[2], 2, expansion))
        self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
        self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))   # Repeat
        self.mv2.append(MV2Block(channels[3], channels[4], 2, expansion))
        self.mv2.append(MV2Block(channels[5], channels[6], 2, expansion))
        self.mv2.append(MV2Block(channels[7], channels[8], 2, expansion))
        
        self.mvit = nn.ModuleList([])
        self.mvit.append(MobileViTBlock(dims[0], L[0], channels[5], kernel_size, patch_size, int(dims[0]*2)))
        self.mvit.append(MobileViTBlock(dims[1], L[1], channels[7], kernel_size, patch_size, int(dims[1]*4)))
        self.mvit.append(MobileViTBlock(dims[2], L[2], channels[9], kernel_size, patch_size, int(dims[2]*4)))

        self.conv2 = conv_1x1_bn(channels[-2], channels[-1])

        self.pool = nn.AvgPool2d(ih//32, 1)
        self.fc = nn.Linear(channels[-1], num_classes, bias=False)

    def forward(self, x):
        x = self.conv1(x)
        x = self.mv2[0](x)

        x = self.mv2[1](x)
        x = self.mv2[2](x)
        x = self.mv2[3](x)      # Repeat

        x = self.mv2[4](x)
        x = self.mvit[0](x)

        x = self.mv2[5](x)
        x = self.mvit[1](x)

        x = self.mv2[6](x)
        x = self.mvit[2](x)
        x = self.conv2(x)

        x = self.pool(x).view(-1, x.shape[1])
        x = self.fc(x)
        return x


def mobilevit_xxs():
    dims = [64, 80, 96]
    channels = [16, 16, 24, 24, 48, 48, 64, 64, 80, 80, 320]
    return MobileViT((256, 256), dims, channels, num_classes=1000, expansion=2)


def mobilevit_xs():
    dims = [96, 120, 144]
    channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384]
    return MobileViT((256, 256), dims, channels, num_classes=1000)


def mobilevit_s():
    dims = [144, 192, 240]
    channels = [16, 32, 64, 64, 96, 96, 128, 128, 160, 160, 640]
    return MobileViT((256, 256), dims, channels, num_classes=1000)


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


if __name__ == '__main__':
    img = torch.randn(5, 3, 256, 256)

    vit = mobilevit_xxs()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

    vit = mobilevit_xs()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

    vit = mobilevit_s()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

yolo.py中导入并注册

加入MV2Block, MobileViTBlock

 

 

修改yaml文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
 
# Parameters
nc: 1 # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
# YOLOv5 backbone
backbone:
  # [from, number, module, args] 640 x 640
#  [[-1, 1, Conv, [32, 6, 2, 2]],  # 0-P1/2  320 x 320
  [[-1, 1, Focus, [32, 3]],
   [-1, 1, MV2Block, [32, 1, 2]],  # 1-P2/4
   [-1, 1, MV2Block, [48, 2, 2]],  # 160 x 160
   [-1, 2, MV2Block, [48, 1, 2]],
   [-1, 1, MV2Block, [64, 2, 2]],  # 80 x 80
   [-1, 1, MobileViTBlock, [64,96, 2, 3, 2, 192]], # 5 out_dim,dim, depth, kernel_size, patch_size, mlp_dim
   [-1, 1, MV2Block, [80, 2, 2]],  # 40 x 40
   [-1, 1, MobileViTBlock, [80,120, 4, 3, 2, 480]], # 7
   [-1, 1, MV2Block, [96, 2, 2]],   # 20 x 20
   [-1, 1, MobileViTBlock, [96,144, 3, 3, 2, 576]], # 11-P2/4 # 9
  ]
 
# YOLOv5 head
head:
  [[-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [256, False]],  # 13
 
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [128, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [256, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [512, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

 

  1. 修改mobilevit.py

 

补充说明

einops.EinopsError: Error while processing rearrange-reduction pattern "b d (h ph) (w pw) -> b (ph pw) (h w) d".

Input tensor shape: torch.Size([1, 120, 42, 42]). Additional info: {'ph': 4, 'pw': 4}

是因为输入输出不匹配造成

记得关掉rect哦!一个是在参数里,另一个在下图。如果要在test或者val中跑,同样要改

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/72446.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

获取接口的所有实现

一、获取接口所有实现类 方法1:JDK自带的ServiceLoader实现 ServiceLoader是JDK自带的一个类加载器,位于java.util包当中,作为 A simple service-provider loading facility。 (1)创建接口 package com.example.dem…

Elasticsearch 8.X 复杂分词搞不定,怎么办?

1、实战问题 球友提问:我想停用所有纯数字的分词 , 官网上的这个方法好像对ik分词器无效! 有没有什么别的方法啊, chart gpt 说分词可以用正则匹配 但是测试好像是不行的 我的es版本是 8.5.3。 2、进一步沟通后,得…

迪瑞克斯拉算法 — 优化

在上一篇迪瑞克斯拉算法中将功能实现了出来,完成了图集中从源点出发获取所有可达的点的最短距离的收集。 但在代码中getMinDistanceAndUnSelectNode()方法的实现并不简洁,每次获取minNode时,都需要遍历整个Map,时间复杂度太高。这…

TypeScript 语法

环境搭建 以javascript为基础构建的语言,一个js的超集,可以在任何支持js的平台中执行,ts扩展了js并且添加了类型,但是ts不能被js解析器直接执行,需要编译器编译为js文件,然后引入到 html 页面使用。 ts增…

Git Cherry-pick使用

概述 无论项目大小,当你和一群程序员一起工作时,处理多个 Git 分支之间的变更都会变得很困难。有时,与其把整个 Git 分支合并到另一个分支,不如选择并移动几个特定的提交。这个过程被称为 "挑拣", 即 Cherry-pick。 本…

使用QT纯代码创建(查找)对话框详细步骤与代码

一、创建项目文件 打开Qt Creator->文件->新建文件或项目->选择Qt Widgets Application 为项目起名字 输入类的名字 二、 了解每个文件的作用 项目创建完毕之后就会出现以下几个文件,先来分别介绍以下这些文件的作用。 Headers->finddialog.h——很显…

2023年国赛数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…

c语言每日一练(5)

前言:每日一练系列,每一期都包含5道选择题,2道编程题,博主会尽可能详细地进行讲解,令初学者也能听的清晰。每日一练系列会持续更新,暑假时三天之内必有一更,到了开学之后,将看学业情…

【三维编辑】Seal-3D:基于NeRF的交互式像素级编辑

文章目录 摘要一、引言二、方法2.1.基于nerf的编辑问题概述2.2.编辑指导生成2.3.即时预览的两阶段学生训练 三、实验四、代码总结 项目主页: https://windingwind.github.io/seal-3d/ 代码:https://github.com/windingwind/seal-3d/ 论文: https://arxiv.org/pdf/23…

k8s-----集群调度

目录 一:调度约束 二:Pod 启动创建过程 三:k8s调度过程 1、Predicate 有一系列的常见的算法 2、常见优先级选项 3、指定调度节点 (1)nodeName指定 (2)nodeSelector指定 四:亲和…

并发编程面试题2

并发编程面试题2 一、AQS高频问题: 1.1 AQS是什么? AQS就是一个抽象队列同步器,abstract queued sychronizer,本质就是一个抽象类。 AQS中有一个核心属性state,其次还有一个双向链表以及一个单项链表。 首先state…

Mac 卸载appium

安装了最新版的appium 2.0.1,使用中各种问题,卡顿....,最终决定回退的。记录下卸载的过程 1.打开终端应用程序 2.卸载全局安装的 Appium 运行以下命令以卸载全局安装的 Appium: npm uninstall -g appium 出现报错:Error: EACCES: permiss…

阿里云服务器带宽计费模式怎么选?有什么区别?

阿里云服务器公网带宽计费模式按固定带宽和按使用流量哪个划算?阿里云百科以北京地域为例,按固定带宽计费1M带宽一个月23元,按使用流量计费1GB流量0.8元,如果云服务器带宽使用率低于10%,那么首选按使用流量计费&#x…

stepin设置菜单icon的两种方式——基础积累

最近在看大佬写的stepin后台管理系统,框架是vue3antd3.xvite,下面记录一下,菜单图标的使用方法。 1.第一种方法就是使用antd中的icon图标 书写方式如下: {path: /,name: 首页,redirect: /analysis,meta: {title: 首页,renderMen…

Untiy Json和Xml的序列化和反序列化

Json的序列化和反序列化 1.定义数据类 [Serializable] public class ZoomPoint {// 点名称, 将作为Key被字典存储public string name;// 轴心X坐标public Vector2 pivot Vector2.one / 2;// 放大倍率,小于1是为缩小倍率,小于0是取绝对值,不…

redis学习笔记(九)

文章目录 python对redis基本操作(1)连接redis(2)数据类型操作 python对redis基本操作 (1)连接redis # 方式1 import redisr redis.Redis(host127.0.0.1, port6379) r.set(foo, Bar) print(r.get(foo))# …

【MOOC】北京理工大学Python网络爬虫与信息提取慕课答案-综合挑出了一些很难评的慕课测验题

1 Requests库中的get()方法最常用,下面哪个说法正确?‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬…

mysql 技术总结

一、mysql 索引(左小右大) 下图中为二叉树 mysql索引类型以及数据结构 BTREE结构 BTree又叫多路平衡搜索树,一颗m叉的BTree特性如下: 树中每个节点最多包含m个孩子。 除根节点与叶子节点外,每个节点至少有[ceil(m/2…

【LeetCode每日一题】——575.分糖果

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 哈希表 二【题目难度】 简单 三【题目编号】 575.分糖果 四【题目描述】 Alice 有 n 枚糖&…

Qt5开发视频播放器

一、播放器界面UI设计 控件对象名位置(坐标点)对象名称组件名称备注Widget(0, 0, 809, 572)WidgetQWidgetlabellabelQLabel播放窗口label_2label_2QLabelvoice_controlvoice_controlQSlider音量滑动条btn_openbtn_openQPushButton打开文件按钮label_4la…