迪瑞克斯拉算法 — 优化

在上一篇迪瑞克斯拉算法中将功能实现了出来,完成了图集中从源点出发获取所有可达的点的最短距离的收集。
但在代码中getMinDistanceAndUnSelectNode()方法的实现并不简洁,每次获取minNode时,都需要遍历整个Map,时间复杂度太高。这篇文章主要是针对上一篇文章代码的一个优化。
其优化的过程中主要是用到了加强堆的数据结构,如果不了解的强烈建议先看加强堆的具体实现。

回顾:

在这里插入图片描述
上一篇中,将确定不变的点放入Set中, 每个点之间的距离关系放入Map中,每次遍历Map获取最小minNode,并根据该点找到所有的边,算出最小距离后,放入set中,最终确定最小距离表。

优化
利用加强堆,来维护点和距离的关系,并利用小根堆的优势,让最小的点总是在最上面,需要注意的是,以往的的加强堆中,如果移除了这个元素会直接remove,但是在这里不能remove,因为要记录这个点是否在堆上,是否加入过堆,所以对于确定了的元素,value要改成 -1,用来标记当前元素已经确定,不用再动。

加强堆代码
NodeHeap中的distanceMap用来表示点和距离的关系,根据value的大小动态变化堆顶元素。
主方法是addOrUpdateOrIgnore()。
如果当前元素在堆中并且value != 1(inHeap),说明元素还没有确定,则判断进来的node和value是否大于当前堆中的node对应的value,取小的更新,如果更新,还需要改变元素在堆中位置,因为只可能越更新越小。所以要调用insertHeapify方法去改变堆结构。
如果元素还未加入过堆(!isEntered),则挂在堆尾,并insertHeapify检查是否上移。
pop方法中,如果弹出堆,正常要删除,但是不能删除,除了和最后一个元素交换,下移外,将distanceMap中对应的值改为 -1。否则无法判断该元素是否已经加入过堆,是否已经确定。

public static class NodeHeap {
        //Node类型的堆
        private Node[] nodes;
        //key对应的Node在堆中的位置是value
        private HashMap<Node, Integer> heapIndexMap;
        //key对应的Node当前距离源点最近距离
        private HashMap<Node, Integer> distanceMap;
        //堆大小
        private int size;

        public NodeHeap(int size) {
            nodes = new Node[size];
            heapIndexMap = new HashMap<>();
            distanceMap = new HashMap<>();
            this.size = 0;
        }

        public boolean isEmpty() {
            return this.size == 0;
        }

        public boolean isEntered(Node head) {
            return heapIndexMap.containsKey(head);
        }

        public boolean inHeap(Node head) {
            return isEntered(head) && heapIndexMap.get(head) != -1;
        }

        public void swap(int index1, int index2) {
            heapIndexMap.put(nodes[index1], index2);
            heapIndexMap.put(nodes[index2], index1);

            Node tmp = nodes[index1];
            nodes[index1] = nodes[index2];
            nodes[index2] = tmp;
        }

        public void heapify(int index, int size) {
            int left = (index * 2) - 1;
            while (left < size) {
                int smallest = left + 1 < size && distanceMap.get(nodes[left + 1]) < distanceMap.get(nodes[left]) ? left + 1 : left;
                smallest = distanceMap.get(nodes[smallest]) < distanceMap.get(nodes[index]) ? smallest : index;

                if (smallest == index) {
                    break;
                }
                swap(smallest, index);
                index = smallest;
                left = (index * 2) - 1;
            }
        }

        public void insertHeapify(Node node, int index) {
            while (distanceMap.get(nodes[index]) < distanceMap.get((index - 1) / 2)) {
                swap(distanceMap.get(nodes[index]), distanceMap.get((index - 1) / 2));
                index = (index - 1) / 2;
            }
        }

        public NodeRecord pop() {
            NodeRecord nodeRecord = new NodeRecord(nodes[0], distanceMap.get(0));
            swap(0, size - 1);
            heapIndexMap.put(nodes[size - 1], -1);
            distanceMap.remove(nodes[size - 1]);
            heapify(0, --size);
            return nodeRecord;
        }

        public void addOrUpdateOrIgnore(Node node, int distance) {
            if (inHeap(node)) {
                distanceMap.put(node, Math.min(distanceMap.get(node), distance));
                insertHeapify(node, distanceMap.get(node));
            }
            if (!isEntered(node)) {
                nodes[size] = node;
                heapIndexMap.put(node, size);
                distanceMap.put(node, distance);
                insertHeapify(node, size++);
            }
        }
    }

主方法逻辑
上来将给定的点添加到堆中,并且弹出,遍历所有的边放到加强堆中去搞。

  public static HashMap<Node, Integer> dijkstra2(Node head, int size) {
        NodeHeap nh = new NodeHeap(size);
        nh.addOrUpdateOrIgnore(head, 0);
        HashMap<Node, Integer> result = new HashMap<>();

        while (!nh.isEmpty()) {
            NodeRecord record = nh.pop();
            Node cur = record.node;
            int distance = record.distance;

            for (Edge edge : cur.edges) {
                nh.addOrUpdateOrIgnore(edge.to, distance + edge.weight);
            }
            result.put(cur, distance);
        }
        return result;
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/72441.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

TypeScript 语法

环境搭建 以javascript为基础构建的语言&#xff0c;一个js的超集&#xff0c;可以在任何支持js的平台中执行&#xff0c;ts扩展了js并且添加了类型&#xff0c;但是ts不能被js解析器直接执行&#xff0c;需要编译器编译为js文件&#xff0c;然后引入到 html 页面使用。 ts增…

Git Cherry-pick使用

概述 无论项目大小&#xff0c;当你和一群程序员一起工作时&#xff0c;处理多个 Git 分支之间的变更都会变得很困难。有时&#xff0c;与其把整个 Git 分支合并到另一个分支&#xff0c;不如选择并移动几个特定的提交。这个过程被称为 "挑拣", 即 Cherry-pick。 本…

使用QT纯代码创建(查找)对话框详细步骤与代码

一、创建项目文件 打开Qt Creator->文件->新建文件或项目->选择Qt Widgets Application 为项目起名字 输入类的名字 二、 了解每个文件的作用 项目创建完毕之后就会出现以下几个文件&#xff0c;先来分别介绍以下这些文件的作用。 Headers->finddialog.h——很显…

2023年国赛数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…

c语言每日一练(5)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;暑假时三天之内必有一更&#xff0c;到了开学之后&#xff0c;将看学业情…

【三维编辑】Seal-3D:基于NeRF的交互式像素级编辑

文章目录 摘要一、引言二、方法2.1.基于nerf的编辑问题概述2.2.编辑指导生成2.3.即时预览的两阶段学生训练 三、实验四、代码总结 项目主页: https://windingwind.github.io/seal-3d/ 代码&#xff1a;https://github.com/windingwind/seal-3d/ 论文: https://arxiv.org/pdf/23…

k8s-----集群调度

目录 一&#xff1a;调度约束 二&#xff1a;Pod 启动创建过程 三&#xff1a;k8s调度过程 1、Predicate 有一系列的常见的算法 2、常见优先级选项 3、指定调度节点 &#xff08;1&#xff09;nodeName指定 &#xff08;2&#xff09;nodeSelector指定 四&#xff1a;亲和…

并发编程面试题2

并发编程面试题2 一、AQS高频问题&#xff1a; 1.1 AQS是什么&#xff1f; AQS就是一个抽象队列同步器&#xff0c;abstract queued sychronizer&#xff0c;本质就是一个抽象类。 AQS中有一个核心属性state&#xff0c;其次还有一个双向链表以及一个单项链表。 首先state…

Mac 卸载appium

安装了最新版的appium 2.0.1,使用中各种问题&#xff0c;卡顿....,最终决定回退的。记录下卸载的过程 1.打开终端应用程序 2.卸载全局安装的 Appium 运行以下命令以卸载全局安装的 Appium&#xff1a; npm uninstall -g appium 出现报错&#xff1a;Error: EACCES: permiss…

阿里云服务器带宽计费模式怎么选?有什么区别?

阿里云服务器公网带宽计费模式按固定带宽和按使用流量哪个划算&#xff1f;阿里云百科以北京地域为例&#xff0c;按固定带宽计费1M带宽一个月23元&#xff0c;按使用流量计费1GB流量0.8元&#xff0c;如果云服务器带宽使用率低于10%&#xff0c;那么首选按使用流量计费&#x…

stepin设置菜单icon的两种方式——基础积累

最近在看大佬写的stepin后台管理系统&#xff0c;框架是vue3antd3.xvite&#xff0c;下面记录一下&#xff0c;菜单图标的使用方法。 1.第一种方法就是使用antd中的icon图标 书写方式如下&#xff1a; {path: /,name: 首页,redirect: /analysis,meta: {title: 首页,renderMen…

Untiy Json和Xml的序列化和反序列化

Json的序列化和反序列化 1.定义数据类 [Serializable] public class ZoomPoint {// 点名称, 将作为Key被字典存储public string name;// 轴心X坐标public Vector2 pivot Vector2.one / 2;// 放大倍率&#xff0c;小于1是为缩小倍率&#xff0c;小于0是取绝对值&#xff0c;不…

redis学习笔记(九)

文章目录 python对redis基本操作&#xff08;1&#xff09;连接redis&#xff08;2&#xff09;数据类型操作 python对redis基本操作 &#xff08;1&#xff09;连接redis # 方式1 import redisr redis.Redis(host127.0.0.1, port6379) r.set(foo, Bar) print(r.get(foo))# …

【MOOC】北京理工大学Python网络爬虫与信息提取慕课答案-综合挑出了一些很难评的慕课测验题

1 Requests库中的get()方法最常用&#xff0c;下面哪个说法正确&#xff1f;‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬…

mysql 技术总结

一、mysql 索引&#xff08;左小右大&#xff09; 下图中为二叉树 mysql索引类型以及数据结构 BTREE结构 BTree又叫多路平衡搜索树&#xff0c;一颗m叉的BTree特性如下&#xff1a; 树中每个节点最多包含m个孩子。 除根节点与叶子节点外&#xff0c;每个节点至少有[ceil(m/2…

【LeetCode每日一题】——575.分糖果

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 哈希表 二【题目难度】 简单 三【题目编号】 575.分糖果 四【题目描述】 Alice 有 n 枚糖&…

Qt5开发视频播放器

一、播放器界面UI设计 控件对象名位置&#xff08;坐标点&#xff09;对象名称组件名称备注Widget(0, 0, 809, 572)WidgetQWidgetlabellabelQLabel播放窗口label_2label_2QLabelvoice_controlvoice_controlQSlider音量滑动条btn_openbtn_openQPushButton打开文件按钮label_4la…

uniapp软键盘谈起遮住输入框和头部被顶起的问题解决

推荐&#xff1a; pages.json中配置如下可解决头部被顶起和表单被遮住的问题。 { "path": "pages/debug/protocol/tagWord", "style": { "app-plus": { "soft…

JAVA多线程和并发基础面试问答(翻译)

JAVA多线程和并发基础面试问答(翻译) java多线程面试问题 1. 进程和线程之间有什么不同&#xff1f; 一个进程是一个独立(self contained)的运行环境&#xff0c;它可以被看作一个程序或者一个应用。而线程是在进程中执行的一个任务。Java运行环境是一个包含了不同的类和程序…

web基础和tomcat的安装,部署jpress应用

目录 1. 简述静态网页和动态网页的区别。 2. 简述 Webl.0 和 Web2.0 的区别。 3. 安装tomcat8&#xff0c;配置服务启动脚本&#xff0c;部署jpress应用。 1. 简述静态网页和动态网页的区别。 【1】定义区别 请求响应信息&#xff0c;发给客户端进行处理&#xff0c;由浏览…