【图像去噪的扩散滤波】基于线性扩散滤波、边缘增强线性和非线性各向异性滤波的图像去噪研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

2.2 算例2

​2.3 算例3 

2.4 算例4 

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文包括:

各种基于扩散的图像滤波方法:
1.使用热方程的线性扩散滤波 - 使用隐式和显式欧拉方法求解。
2. 边缘增强线性各向异性扩散滤波。
3. 边缘增强非线性各向异性扩散滤波。

基于线性扩散滤波、边缘增强线性和非线性各向异性滤波的图像去噪研究是一个常见的信号处理领域的研究方向。下面将进一步介绍这些方法以及相关的研究内容:

1. 线性扩散滤波(Linear Diffusion Filtering):线性扩散滤波是一种基于偏微分方程的图像去噪方法。它通过在图像中应用一个扩散过程来减少噪声。在扩散过程中,噪声会逐渐模糊,而图像细节被保留。不同的线性扩散滤波方法可能使用不同的扩散方程,调整参数可以控制滤波效果。

2. 边缘增强线性扩散(Edge-Enhancing Linear Diffusion):这种方法是在线性扩散滤波的基础上进一步增强图像的边缘。它通过应用一个加权因子来保护图像边缘,从而避免过度模糊,同时去除噪声。通过增强边缘信息,图像的细节被更好地保留。

3. 非线性各向异性滤波(Nonlinear Anisotropic Filtering):非线性各向异性滤波是一种基于局部图像特征的去噪方法。它通过对图像进行局部方向和梯度分析,根据像素的梯度值来调整滤波过程。这种方法可以在保留边缘细节的同时,减少噪声。

相关的研究内容包括但不限于以下几个方面:

1. 算法改进:针对线性扩散滤波、边缘增强线性和非线性各向异性滤波等方法,研究者可以提出改进的算法,以进一步提高去噪效果和图像细节保留能力。这可能涉及到参数优化、滤波算子设计、区域自适应滤波策略等方面的研究。

2. 模型分析:研究者可以分析不同滤波方法在图像去噪中的原理和特点。比较线性扩散滤波、边缘增强线性和非线性各向异性滤波在去噪效果、计算效率、对图像细节保留的影响等方面的差异和优劣。

3. 参数优化:针对各种滤波方法,研究者可以进行参数优化,以获得最佳的去噪效果。这可能包括通过优化算法搜索最佳参数组合,或者根据图像特性和噪声特点进行自适应参数调整。

4. 实际应用:将这些去噪方法应用到实际图像处理中,如数字图像、医学影像等。研究者可以通过实验和评估来验证这些方法在不同场景和数据上的效果,并与其他图像去噪方法进行比较。

总的来说,基于线性扩散滤波、边缘增强线性和非线性各向异性滤波的图像去噪研究旨在提供有效的信号处理方法,以减少图像中的噪声,并尽可能保留重要的图像细节。

📚2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3 

 

2.4 算例4 

 部分代码:

clear;

%read image
im = image_read('synimgn2');
[mm nn] = size(im);

w=im;
w = double(w);

%setting finite difference constants
alpha =0.5;
k = 1;
h = 1;

lambda = (alpha^2)*(k/(h^2));

[m n] = size(w);

% A matrix form Ax=B linear system
A = zeros(m,m);

% this gen_vec would be rotated and used to populate the matrix A
gen_vec = zeros(1,m);
gen_vec(1,1) = lambda;
gen_vec(1,2) = (1-2*lambda);
gen_vec(1,3) = lambda;

%filling in values of A matrix
for i=2:m
    A(i,:) = gen_vec;
    gen_vec = circshift(gen_vec,[1 1]);    
end
A(1,1) = (1-2*lambda);
A(1,2) = (lambda);

%making the top-right and bottom-left corners null
A(1:2,n-1:n) = 0;
A(m-1:m,1:2) = 0;

fprintf('size of w: %d\n',[size(w)]);
fprintf('size of w: %d\n',[size(A)]);
w_j_1 = w;
j=1;
figure
for i=1:200 %for each iteration
    %multiplication by A on both sides results in diffences in both x and y

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李俊盛,刘宗田.基于异性扩散-中值滤波的超声医学图像去噪方法[J].计算机应用与软件, 2009, 26(1):3.DOI:10.3969/j.issn.1000-386X.2009.01.028.

[2]张瞳,朱虹,张然,等.复小波域维纳滤波与偏微分扩散相结合的图像去噪方法[J].中国图象图形学报A, 2009.

[3]王译禾.基于非线性扩散滤波结构信息的图像去噪方法研究[D].南京信息工程大学,2016.DOI:10.7666/d.Y3169747.

[4]莫绍强.基于各向异性扩散滤波的图像去噪研究[J].内蒙古师范大学学报:自然科学汉文版, 2017, 46(1):4.DOI:10.3969/j.issn.1001-8735.2017.01.006.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/71918.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络安全(黑客)自学路线/笔记

想自学网络安全(黑客技术)首先你得了解什么是网络安全!什么是黑客! 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全…

有没有推荐的golang的练手项目?

前言 下面是github上的golang项目,适合练手,可以自己选择一些项目去练习,整理不易,希望能多多点赞收藏一下!废话少说,我们直接进入正题>>> 先推荐几个教程性质的项目(用于新手学习、巩…

欧拉公式之证明

首先,我们考虑复数函数的泰勒级数展开式。对于任意一个复数函数f(z),我们可以将其在za处进行泰勒级数展开: f(z) f(a) f(a)(z-a) f(a)(z-a)^2/2! f(a)(z-a)^3/3! ... 其中f(a)表示f(z)在za处的导数,f(a)表示f(z)在…

Ctfshow web入门 XXE 模板注入篇 web373-web378 详细题解 全

CTFshow XXE web373 学习资料: (梭哈~) https://www.cnblogs.com/20175211lyz/p/11413335.html https://www.cnblogs.com/zhaijiahui/p/9147595.html https://www.cnblogs.com/r00tuser/p/7255939.html https://mp.weixin.qq.com/s?__bizMz…

python中yield关键字

yield和return 理解一个东西最好的办法就是找一个和它类似的东西,然后再搞清楚它们之间的区别。 yield最类似的东西就是return,因为他们起到了同样的作用:返回值。 看这个return的函数: def have_some_wine():print(先开一瓶酒&a…

虚幻5中Lumen提供哪些功能以及如何工作的

虚幻引擎 5 中的 Lumen 是一个完全动态的全局照明和反射系统。它可以在虚幻引擎 5 中使用,因此创作者无需自行设置。它是为下一代控制台和建筑可视化等高端可视化而设计的。那么它提供了哪些功能以及如何工作? 全局照明 当光离开光源时,它会…

【TI毫米波雷达笔记】MMWave配置流程避坑

【TI毫米波雷达笔记】MMWave配置流程避坑 在TI SDK目录下的mmwave.h文档说明中 强调了要按以下配置: mmWave API The mmWave API allow application developers to be abstracted from the lower layer drivers and the mmWave link API.The mmWave file should b…

【设计模式】适配器模式

适配器模式(Adapter Pattern)是作为两个不兼容的接口之间的桥梁。这种类型的设计模式属于结构型模式,它结合了两个独立接口的功能。 这种模式涉及到一个单一的类,该类负责加入独立的或不兼容的接口功能。举个真实的例子&#xff…

Android多渠道打包+自动签名工具 [原创]

多渠道打包自动签名工具 [原创] github源码:github.com/G452/apk-packer 程序体验下载地址:github.com/G452/apk-packer.exe 如果觉得有帮助可以点个小星星支持一下,万分感谢! 使用步骤: 1、在apk-packer.exe目录内放…

【数据结构】“栈”的模拟实现

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

FastAPI入门

目录 FastAPI FastAPI 是什么 为什么要用 FastAPI FastAPI 入门 安装 用 FastAPI 写个接口 调试接口 创建快捷请求 保存为快捷请求 发送请求 总结 FastAPI FastAPI 是什么 什么是 FastAPI 呢? FastAPI 是 Python 的一个框架,如果要类比的话…

Python-OpenCV中的图像处理-形态学转换

Python-OpenCV中的图像处理-形态学转换 形态学转换腐蚀膨胀开运算闭运算形态学梯度礼帽黑帽形态学操作之间的关系 形态学代码例程 形态学转换 形态学操作:腐蚀,膨胀,开运算,闭运算,形态学梯度,礼帽,黑帽等…

① vue复习。从安装到使用

vue官网:cn.vuejs.org vue安装 cnpm install -g vue/cli 查看是否安装成功 vue --version 创建一个项目 vue create vue-demo(项目名称) 这个取消掉。空格可选中或者取消。 运行项目: cd 进入到项目下 npm run serve 运行成功后,访问这…

【Linux】【驱动】驱动框架以及挂载驱动

【Linux】【驱动】驱动框架以及挂载驱动 绪论1.配置开发环境2. 编写驱动文件3. 编译Makefile文件4.编译5. 挂载驱动注意:有些开发板打开了或者禁止了printk信息,导致你看到的实验现象可能不一样,此时已经将文件移动到了开发板中,开发板查看文…

接口mock常用工具

在进行测试时,我们经常需要模拟接口数据,尤其是在前后端分离项目的开发中,在后端未完成开发时,前端拿不到后端的数据,就需要对后端返回的数据进行模拟。 如下一些工具,可以完成接口的mock。 Yapi 首先添…

Redis_安装、启动以及基本命令

2.Redis安装 2.1前置处理环境 VMware安装安装centOS的linux操作系统xshellxftp 2.2 配置虚拟机网络 按ctrlaltf2 切换到命令行 cd (/)目录 修改/etc/sysconfig/network-scripts/ifcfg-ens3 vi 命令 按insert表示插入 按ctrlesc退出修改状态 :wq 写入并退出 此文件必须保持一…

dbm与mw转换

功率值10^(dBm值/10),单位mW。 对于-5dBm,其功率值为0.3162 mW。 dBm 10 * lg(mW)

数学建模(二)线性规划

课程推荐:6 线性规划模型基本原理与编程实现_哔哩哔哩_bilibili 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支:数学规划。而线性规划(Linear Program…

深入探索 Spring MVC:构建优雅的Web应用

文章目录 前言一、什么是 Spring MVC1.1 什么是 MVC1.2 什么是 Spring MVC 二、Spring MVC 项目的创建2.1 项目的创建2.2 第一个 Spring MVC 程序 —— Hello World 三、RequestMapping 注解3.1 常用属性3.2 方法级别和类级别注解3.3 GetMapping、PostMapping、PutMapping、Del…

【网络安全】等保测评系列预热

【网络安全】等保测评系列预热 前言1. 什么是等级保护?2. 为什么要做等保?3. 路人甲疑问? 一、等保测试1. 渗透测试流程1.1 明确目标1.2 信息搜集1.3 漏洞探索1.4 漏洞验证1.5 信息分析1.6 获取所需1.7 信息整理1.8 形成报告 2. 等保概述2.1 …