Python-OpenCV中的图像处理-形态学转换

Python-OpenCV中的图像处理-形态学转换

  • 形态学转换
    • 腐蚀
    • 膨胀
    • 开运算
    • 闭运算
    • 形态学梯度
    • 礼帽
    • 黑帽
    • 形态学操作之间的关系
  • 形态学代码例程

形态学转换

  • 形态学操作:腐蚀,膨胀,开运算,闭运算,形态学梯度,礼帽,黑帽等
  • 主要涉及函数:cv2.erode(), cv2.dilate(), cv2.morphologyEx()
  • 原理:形态学操作是根据图像形状进行的简单操作。一般情况下对二值化图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化元素或核,它是用来决定操作的性质的。两个基本的形态学操作是腐蚀和膨胀。他们的变体构成了开运算,闭运算,梯度等。

腐蚀

就像土壤侵蚀一样,这个操作会把前景物体的边界腐蚀掉(但是前景仍然是白色)。这是怎么做到的呢?卷积核沿着图像滑动,如果与卷积核对应的原图像的所有像素值都是 1,那么中心元素就保持原来的像素值,否则就变为零。这回产生什么影响呢?根据卷积核的大小靠近前景的所有像素都会被腐蚀掉(变为 0),所以前景物体会变小,整幅图像的白色区域会减少。这对于去除白噪声很有用,也可以用来断开两个连在一块的物体等。

import numpy as np
import cv2
from matplotlib import pyplot as plt


img = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((5,5), np.uint8)
erosion = cv2.erode(img, kernel=kernel, iterations=1)

plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(erosion, cv2.COLOR_BGR2RGB)), plt.title('erode'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

膨胀

与腐蚀相反,与卷积核对应的原图像的像素值中只要有一个是 1,中心元素的像素值就是 1。所以这个操作会增加图像中的白色区域(前景)。一般在去噪声时先用腐蚀再用膨胀。因为腐蚀在去掉白噪声的同时,也会使前景对象变小。所以我们再对他进行膨胀。这时噪声已经被去除了,不会再回来了,但是前景还在并会增加。膨胀也可以用来连接两个分开的物体。

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 膨胀
img = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Original_Image.png', cv2.IMREAD_GRAYSCALE)

kernel = np.ones((5,5), np.uint8)
dilation = cv2.dilate(img, kernel=kernel, iterations=1)

plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(dilation, cv2.COLOR_BGR2RGB)), plt.title('dilate'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

开运算

先腐蚀再膨胀就叫做开运算。它被用来去除噪声。这里我们用到的函数是 cv2.morphologyEx()
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

闭运算

先膨胀再腐蚀就叫做闭运算。它经常被用来填充前景物体中的小洞,或者前景物体上的小黑点
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

形态学梯度

其实就是一幅图像膨胀与腐蚀的差别,结果看上去就像前景物体的轮廓。
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

礼帽

原始图像与进行开运算之后得到的图像的差。下面的例子是用一个 9x9 的核进行礼帽操作的结果。
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

黑帽

进行闭运算之后得到的图像与原始图像的差
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)

形态学操作之间的关系

形态学转换

  • Opening:
    dst = open(src, element) = dilate(erode(src, element), element)
  • Closing:
    dst = close(src, element) = erode(dilate(src, element), element)
  • Morphological gradient:
    dst = morph_grad(src, element) = dilate(src, element) - erode(src, element)
  • “Top hat”:
    dst = tophat(src, element) = src - open(src, element)
  • “Black hat”:
    dst = blackhat(src, element) = close(src, element) - src

形态学代码例程

import numpy as np
import cv2
from matplotlib import pyplot as plt

'''
形态学转换
Opening: 
    dst = open(src, element) = dilate(erode(src, element), element)

Closing:
    dst = close(src, element) = erode(dilate(src, element), element)

Morphological gradient:
    dst = morph_grad(src, element) = dilate(src, element) - erode(src, element)

"Top hat":
    dst = tophat(src, element) = src - open(src, element)

"Black hat":
    dst = blackhat(src, element) = close(src, element) - src
'''

# 开运算
# 先进行腐蚀在进行膨胀叫做开运算。用来去除噪音
# opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

# 闭运算
# 先进行膨胀再进行腐蚀叫做闭运算。用来填充前景物体中的小洞,或者全景上的小黑点。
# closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

# 形态学梯度
# 就是一副图像膨胀与腐蚀的差别,结果看上去就像前景物体的轮廓。
# gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

# 礼帽
# 原始图像与进行开运算之后得到的图像的差
# tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

# 黑帽
# 原始图像与进行闭运算之后得到的图像的差
# blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)

# 结构化元素
kernel_rect = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))       # 矩形核
kernel_elli = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))    # 椭圆核
kernel_cros = cv2.getStructuringElement(cv2.MORPH_CROSS, (5,5))      # 十字核

# 卷积核
# kernel = kernel_rects
# kernel = kernel_elli
# kernel = kernel_cros
kernel = np.ones((5,5), np.uint8)
kernel9x9 = np.ones((15,15), np.uint8)

img_origin = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_COLOR)
img_gray = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_GRAYSCALE)

# 开运算 腐蚀=>膨胀
opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)

# 闭运算 膨胀=>腐蚀
closing = cv2.morphologyEx(img_gray, cv2.MORPH_CLOSE, kernel)

# 梯度 膨胀-腐蚀 
gradient = cv2.morphologyEx(img_gray, cv2.MORPH_GRADIENT, kernel)

# 礼帽  原始图像与进行开运算之后得到的图像的差
tophat = cv2.morphologyEx(img_gray, cv2.MORPH_TOPHAT, kernel9x9)

# 黑帽 进行闭运算之后与原始图像的图像的差
blackhat = cv2.morphologyEx(img_gray, cv2.MORPH_BLACKHAT, kernel9x9)

# 腐蚀
erosion = cv2.erode(img_gray, kernel=kernel, iterations=1)

# 膨胀 
dilation = cv2.dilate(img_gray, kernel=kernel, iterations=1)

plt.subplot(331), plt.imshow(cv2.cvtColor(img_origin,cv2.COLOR_BGR2RGB), 'gray'), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(332), plt.imshow(img_gray, 'gray'), plt.title('gray'), plt.xticks([]), plt.yticks([])
plt.subplot(333), plt.imshow(opening, 'gray'), plt.title('open'), plt.xticks([]), plt.yticks([])
plt.subplot(334), plt.imshow(closing, 'gray'), plt.title('close'), plt.xticks([]), plt.yticks([])
plt.subplot(335), plt.imshow(gradient, 'gray'), plt.title('gradient'), plt.xticks([]), plt.yticks([])
plt.subplot(336), plt.imshow(tophat, 'gray'), plt.title('tophat'), plt.xticks([]), plt.yticks([])
plt.subplot(337), plt.imshow(blackhat, 'gray'), plt.title('blackhat'), plt.xticks([]), plt.yticks([])
plt.subplot(338), plt.imshow(erosion, 'gray'), plt.title('erode'), plt.xticks([]), plt.yticks([])
plt.subplot(339), plt.imshow(dilation, 'gray'), plt.title('dilate'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/71898.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

① vue复习。从安装到使用

vue官网:cn.vuejs.org vue安装 cnpm install -g vue/cli 查看是否安装成功 vue --version 创建一个项目 vue create vue-demo(项目名称) 这个取消掉。空格可选中或者取消。 运行项目: cd 进入到项目下 npm run serve 运行成功后,访问这…

【Linux】【驱动】驱动框架以及挂载驱动

【Linux】【驱动】驱动框架以及挂载驱动 绪论1.配置开发环境2. 编写驱动文件3. 编译Makefile文件4.编译5. 挂载驱动注意:有些开发板打开了或者禁止了printk信息,导致你看到的实验现象可能不一样,此时已经将文件移动到了开发板中,开发板查看文…

接口mock常用工具

在进行测试时,我们经常需要模拟接口数据,尤其是在前后端分离项目的开发中,在后端未完成开发时,前端拿不到后端的数据,就需要对后端返回的数据进行模拟。 如下一些工具,可以完成接口的mock。 Yapi 首先添…

Redis_安装、启动以及基本命令

2.Redis安装 2.1前置处理环境 VMware安装安装centOS的linux操作系统xshellxftp 2.2 配置虚拟机网络 按ctrlaltf2 切换到命令行 cd (/)目录 修改/etc/sysconfig/network-scripts/ifcfg-ens3 vi 命令 按insert表示插入 按ctrlesc退出修改状态 :wq 写入并退出 此文件必须保持一…

dbm与mw转换

功率值10^(dBm值/10),单位mW。 对于-5dBm,其功率值为0.3162 mW。 dBm 10 * lg(mW)

数学建模(二)线性规划

课程推荐:6 线性规划模型基本原理与编程实现_哔哩哔哩_bilibili 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支:数学规划。而线性规划(Linear Program…

深入探索 Spring MVC:构建优雅的Web应用

文章目录 前言一、什么是 Spring MVC1.1 什么是 MVC1.2 什么是 Spring MVC 二、Spring MVC 项目的创建2.1 项目的创建2.2 第一个 Spring MVC 程序 —— Hello World 三、RequestMapping 注解3.1 常用属性3.2 方法级别和类级别注解3.3 GetMapping、PostMapping、PutMapping、Del…

【网络安全】等保测评系列预热

【网络安全】等保测评系列预热 前言1. 什么是等级保护?2. 为什么要做等保?3. 路人甲疑问? 一、等保测试1. 渗透测试流程1.1 明确目标1.2 信息搜集1.3 漏洞探索1.4 漏洞验证1.5 信息分析1.6 获取所需1.7 信息整理1.8 形成报告 2. 等保概述2.1 …

【Linux 网络】网络层协议之IP协议

IP协议 IP协议所处的位置网络层要解决的问题IP协议格式分片与组装网段划分特殊的IP地址IP地址的数量限制私网IP地址和公网IP地址路由 IP协议所处的位置 IP指网际互连协议,Internet Protocol的缩写,是TCP/IP体系中的网络层协议。 网络层要解决的问题 网络…

对于git功能的探索与研究

读前提示 注意: 本文只是面向初学者或者之前并未接触过git而想学习如何初步使用git的读者,如果您很擅长使用git,并善于维护远程仓库,那么不建议您看此篇文章,这会浪费您的时间。 当然,这篇文章还是能很好地…

WinForm内嵌Unity3D

Unity3D可以C#脚本进行开,使用vstu2013.msi插件,可以实现在VS2013中的调试。在开发完成后,由于项目需要,需要将Unity3D嵌入到WinForm中。WinForm中的UnityWebPlayer Control可以载入Unity3D。先看效果图。 一、为了能够动态设置ax…

用chatGPT从左右眼图片生成点云数据

左右眼图片 需求 需要将左右眼图像利用视差生成三维点云数据 先问问chatGPT相关知识 进一步问有没有现成的软件 chatGPT提到了OpenCV,我们让chatGPT用OpenCV写一个程序来做这个事情 当然,代码里面会有一些错误,chatGPT写的代码并不会做模…

并发编程--------JUC集合

并发集合 一、ConcurrentHashMap 1.1 存储结构 ConcurrentHashMap是线程安全的HashMap ConcurrentHashMap在JDK1.8中是以CASsynchronized实现的线程安全 CAS:在没有hash冲突时(Node要放在数组上时) synchronized:在出现hash…

案例12 Spring MVC入门案例

网页输入http://localhost:8080/hello&#xff0c;浏览器展示“Hello Spring MVC”。 1. 创建项目 选择Maven快速构建web项目&#xff0c;项目名称为case12-springmvc01。 2.配置Maven依赖 <?xml version"1.0" encoding"UTF-8"?><project xm…

Nacos AP架构集群搭建(Windows)

手写SpringCloud项目地址&#xff0c;求个star github:https://github.com/huangjianguo2000/spring-cloud-lightweight gitee:https://gitee.com/huangjianguo2000/spring-cloud-lightweigh 目录&#xff1a; 一&#xff1a;初始化MySQL 二&#xff1a;复制粘贴三份Nacos文…

vue2 封装 webSocket 开箱即用

第一步&#xff1a; 下载 webSocket npm install vue-native-websocket --save 第二步&#xff1a; 需要在 main.js 中 引入 import websocket from vue-native-websocket; Vue.use(websocket, , {connectManually: true, // 手动连接format: json, // json格式reconnection:…

【网络编程】万字详解||一个简单TCP服务器(TCP、线程池、守护进程)源码+介绍

TCP服务器 锁&#xff1a;Lock.hpp代码介绍 守护进程&#xff1a;daemonize.hpp代码说明 日志文件&#xff1a;log.hpp代码说明 任务处理 Task.hpp代码说明 线程池 ThreadPool.hpp代码说明 客户端 TCPClient.cc代码说明 服务器 TCPServer.cc代码说明 头文件包 util.hpp代码 Mak…

从源码层面深度剖析Spring循环依赖 | 京东云技术团队

以下举例皆针对单例模式讨论 图解参考 https://www.processon.com/view/link/60e3b0ae0e3e74200e2478ce 1、Spring 如何创建Bean&#xff1f; 对于单例Bean来说&#xff0c;在Spring容器整个生命周期内&#xff0c;有且只有一个对象。 Spring 在创建 Bean 过程中&#xff0…

Python Opencv实践 - 图像平移

import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)#图像平移 #cv.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) # M是仿射变换矩阵&#xff0c;对于平移来说M是一…

如何撰写一份清晰有效的说明文档

如何撰写一份清晰有效的说明文档 文章目录 导语1.明确读者群体&#xff1a;2.明确文档目的&#xff1a;3.提供清晰的结构&#xff1a;4.使用简洁明了的语言&#xff1a;5.提供具体的示例&#xff1a;6.注意文档格式和风格&#xff1a;7.接受反馈并更新文档&#xff1a;结语 导语…