深入探讨限流算法:固定窗口、滑动窗口、漏桶与令牌桶原理及应用场景

固定窗口算法

简单粗暴,但有临界问题:

固定窗口算法

滑动窗口算法

滑动窗口通俗来讲是一种流量控制技术,描述接收方TCP数据报缓冲区大小的数据。发送方根据这个数据计算最大可发送的数据量。滑动窗口协议是TCP使用的一种流量控制方法,允许发送方在停止并等待确认前连续发送多个分组。

滑动窗口算法

漏桶算法

定义:

  • 桶容量固定,任意速率流入水滴,桶满则溢出(被丢弃)。
  • 桶底有个洞,固定速率流出水滴。

特点:

  • 漏桶核心是:请求来了直接进桶,桶根据漏洞大小慢慢漏出。

漏桶算法

令牌桶算法

定义:

  • 桶容量固定,用于放令牌,固定速率放令牌,桶满则不放。
  • 处理请求需先拿令牌,拿不到令牌则限流。

特点:

  • 突发情况下可一次拿多个令牌处理。

令牌桶算法

每种算法都有其适用场景:

  • 固定窗口算法适合对时间敏感度不高的场景。
  • 滑动窗口算法适合需要更平滑流量控制的场景。
  • 漏桶算法适合需要强制恒定速率处理请求的场景。
  • 令牌桶算法适合需要应对突发流量,但平均速率可控的场景。

在实际应用中,可以根据业务需求和系统特点选择合适的限流算法。例如,在Redis中实现限流时,可以使用Redis的原子命令和Lua脚本功能来实现这些算法,确保限流逻辑的原子性和高效执行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/713180.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何从印刷体的图片中把手写体部分统统去掉?--免费途径

AI图像处理技术 我是从国外某个网站上找到在线AI免费credit的处理方式的。国内的基本没有全功能试用、或者即使收费也不好用。 国内的差距主要是:1、对图片分辨率和大小有更多限制,即使收费用户也是;2、需要安装app之类,然后连线…

给类设置serialVersionUID

第一步打开idea设置窗口(setting窗口默认快捷键CtrlAltS) 第二步搜索找到Inspections 第三步勾选主窗口中Java->Serializations issues->下的Serializable class without serialVersionUID’项 ,并点击“OK”确认 第四步鼠标选中要加…

智能体(Agent)实战——从gpts到auto gen

一.GPTs 智能体以大模型作为大脑,同时配备技能,使其能够完成具体的任务。同时,为了应用于垂直领域,我们需要为大模型定义一个角色,并构建知识库。最后,定义完整的流程,使其完成整个任务。以组会…

【回文 马拉车】214. 最短回文串

本文涉及知识点 回文 马拉车 LeetCode214. 最短回文串 给定一个字符串 s,你可以通过在字符串前面添加字符将其转换为回文串。找到并返回可以用这种方式转换的最短回文串。 示例 1: 输入:s “aacecaaa” 输出:“aaacecaaa” 示…

从最小二乘法的角度来理解卡尔曼滤波(1)

从最小二乘法的角度来理解卡尔曼滤波(1) flyfish 假设你有一堆数据点,比如在一个二维平面上有很多点。你想找到一条直线,能够尽可能接近这些点。这条直线可以用一个方程来表示:y mx b,其中 m 是斜率&am…

Nginx - 反向代理、负载均衡、动静分离(案例实战分析)

目录 Nginx 开始 概述 安装(非 Docker) 配置环境变量 常用命令 配置文件概述 location 路径匹配方式 配置反向代理 实现效果 准备工作 具体配置 效果演示 配置负载均衡 实现效果 准备工作 具体配置 实现效果 其他负载均衡策略 配置动…

MATLAB直方图中bin中心与bin边界之间的转换

要将 bin 中心转换为 bin 边界,请计算 centers 中各连续值之间的中点。 d diff(centers)/2; edges [centers(1)-d(1), centers(1:end-1)d, centers(end)d(end)];要将 bin 边界转换为bin 中心 bincenters binedges(1:end-1)diff(binedges)/2;

16.大模型分布式训练框架 Microsoft DeepSpeed

微调、预训练显存对比占用 预训练LLaMA2-7B模型需要多少显存? 假设以bf16混合精度预训练 LLaMA2-7B模型,需要近120GB显存。即使A100/H100(80GB)单卡也无法支持。 为何比 QLoRA多了100GB?不妨展开计算下显存占用&…

文章MSM_metagenomics(五):共现分析

欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 介绍 本教程是使用一个Python脚本来分析多种微生物(即strains, species, genus等&…

维度建模中的事实表设计原则

维度建模是一种数据仓库设计方法,其核心是围绕业务过程建立事实表和维度表。事实表主要存储与业务过程相关的度量数据,而维度表则描述这些度量数据的属性。 以下是设计事实表时需要遵循的几个重要原则,来源于《维度建模》那本书上&#xff0…

13.docker registry(私有仓库)

docker registry(私有仓库) 1.从公有仓库中下载镜像比较慢 ,比如docker run执行一个命令假设本地不存在的镜像,则会去共有仓库进行下载。 2.如果要是2台机器之间进行拷贝,则拷贝的是完整的镜像更消耗空间。 3.如果1个…

python数据分析-糖尿病数据集数据分析预测

一、研究背景和意义 糖尿病是美国最普遍的慢性病之一,每年影响数百万美国人,并对经济造成重大的经济负担。糖尿病是一种严重的慢性疾病,其中个体失去有效调节血液中葡萄糖水平的能力,并可能导致生活质量和预期寿命下降。。。。 …

docker 简单在线安装教程

1、配置阿里镜像源 wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.repos.d/docker-ce.repo 2、指定版本安装docker 本次制定安装 docker 服务版本、客户端版本都为: 19.03.14-3.el7 yum -y install docker-ce-19.03.14-3.e…

【python】tkinter GUI开发: 多行文本Text,单选框Radiobutton,复选框Checkbutton,画布canvas的应用实战详解

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

【Spine学习06】之IK约束绑定,制作人物待机动画,图表贝塞尔曲线优化动作

引入IK约束的概念: 约束目标父级 被约束骨骼子集 这样理解更好,约束目标可以控制被约束的两个骨骼运作 IK约束绑定过程中呢,如果直接绑定最下面的脚掌骨骼会发生偏移,所以在开始处理IK之前,需要先设置一个ROOT结点下的…

采煤vr事故灾害应急模拟救援训练降低生命财产损失

在化工工地,设备繁多、环境复杂,潜藏着众多安全隐患,稍有不慎便可能引发安全事故。为了保障工地的安全,我们急需一套全面、高效的安全管理解决方案。web3d开发公司深圳华锐视点研发的工地安全3D模拟仿真隐患排查系统,正…

hugo-magic主题使用教程(一)

前提条件 以下教程以windows10为例操作终端使用git bash魔法上网的前提下 下载hugo https://github.com/gohugoio/hugo/releases/download/v0.127.0/hugo_extended_0.127.0_windows-amd64.zip解压到任意目录,然后将目录添加到系统环境变量 如图 (windows)打开cmd 输入 hugo …

Superset 二次开发之Git篇 git cherry-pick

Cherry-Pick 命令是 Git 中的一种功能,用于将特定的提交(commit)从一个分支应用到另一个分支。它允许你选择性地应用某些提交,而不是合并整个分支。Cherry-Pick 非常适合在需要将特定更改移植到其他分支时使用,例如从开…

为什么用SDE(随机微分方程)来描述扩散过程【论文精读】

为什么用SDE(随机微分方程)来描述扩散过程【论文精读】 B站视频:为什么用SDE(随机微分方程)来描述扩散过程 论文:Score-Based Generative Modeling through Stochastic Differential Equations 地址:https://doi.org/10.48550/arXiv.2011.13…

单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧

在这里先接上一篇文章单调栈,这里还有单调栈的一道题 题目一(单调栈续) 给定一个数组arr, 返回所有子数组最小值的累加和 就是一个数组,有很多的子数组,每个数组肯定有一个最小值,要把所有子…