单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧

在这里先接上一篇文章单调栈,这里还有单调栈的一道题

题目一(单调栈续)

给定一个数组arr, 返回所有子数组最小值的累加和

就是一个数组,有很多的子数组,每个数组肯定有一个最小值,要把所有子数组的最小值的累加和。例如数组 [3 1 4 2] 子数组 3 的最小值是 3 子数组 3 1 的最小值是  1  子数组 3  1  4 的累加和是1 等等,把所有的累加和相加,就是我们要求的。这一题我们暴力解肯定是不行的,因为时间复杂度太高了  ......   我们假设 i 位置的数是 x我们要找到以x  为最小值的子数组的范围,举个具体的例子, i =10位置的数是  7  ,我左边找离我最近的比我小的 值是 5 ,它在 5位置,右边离我最近的比我小的是 4 在 15 位置,中间这个位置是从哪到哪呢,是从 6 位置开始 到 14 位置结束,而且从 6 到 14  位置最小值是 这个7,我们看从6 到 14 这些数组中,有多少个是以7为最小值的,我们第一反应是都是,都是吗,我们假设 6位置是个10  我们 6 到 6位置就是以10 为最小值的,假设7位置是 8 那么 6 到 7 就是以 7位置的8 为最小值的,那到底有多少是以 10 位置的7 为最小值的呢,你只要跨过10位置的7,就都是以该位置为最小值的,比如 6到 10位置, 7到 10位置,10位置到11位置,等等,都是。 6 7 8 9 10 11 12 13 14 一共有多少个子数组呢,我们需要跨过 10 位置  6  7 8 9 10  5个数字  10 11 12 13 14 5个数字,所以一共有 5 * 5 = 25 个 。 我们推广一下,假如说   一个i 位置,它的值为 x  ,左边离他最近的比它小的位置是k位置 值是 y,右边离他最近的比它小的位置是 j  值是z,那么产生多少累加和,i 是到不了k 的,得从 k + 1 开始,那有多少个开始位置呢 i - (k + 1) + 1个位置, 一化简,i - k 个位置,有多少个结束位置呢  (j - i )个结束位置,他们想 乘,就是子数组的数量这一题我们先假设是无重复值的。看是不是相当的清晰,注意刚刚我说是先假设无重复值的,那有点人就说,那我就是有重复值咋办,有重复值,就麻烦了,如果有重复值,我们需要做一些改进  举个栗子  2 4 5 3 6 6 6 3 7 8 6 3 5 3 2 ,我们关注 3  我们 3位置的 3 左边正常找比它小的,右边到 7 位置的 3 时我们就停住,在算 7 位置的 3时,左边比他小的位置可以算到 0位置的2  但右边就只能算到11位置的3 前一个位置。

代码如下:

public static int sumSubarrayMins(int[] arr){
        int[] left = nearLeftEqualsLeft(arr);
        int[] right = nearRightEqualsRight(arr);

        long sum = 0;
        for (int i = 0; i < arr.length; i++) {
            long start = i - left[i];
            long end = right[i] - i;
            sum += arr[i] * start * end;
            sum %= 1000000007;
        }
        return (int)sum;

    }

    private static int[] nearLeftEqualsLeft(int[] arr) {
        
        int[] result = new int[arr.length];
        Stack<Integer> stack = new Stack<>();

        for (int i = 0; i < arr.length; i++) {
            while (!stack.isEmpty() && arr[i] <= arr[stack.peek()]){
                Integer pop = stack.pop();
                result[pop] = stack.isEmpty() ? -1 : stack.peek();
            }
            stack.push(i);
        }
        while (!stack.isEmpty()){
            Integer pop = stack.pop();
            result[pop] = stack.isEmpty() ? -1 : stack.peek();
        }
        return result;
    }

    private static int[] nearRightEqualsRight(int[] arr){

        int[] result = new int[arr.length];
        Stack<Integer> stack = new Stack<>();
        for (int i = 0; i < arr.length; i++) {
            while (!stack.isEmpty() && arr[i] <= arr[stack.peek()] ){
                Integer pop = stack.pop();
                result[pop] =  i;
            }
            stack.push(i);
        }
        while (!stack.isEmpty()){
            Integer pop = stack.pop();
            result[pop] = arr.length;
        }
        return result;
    }

这里面用的是栈,时间复杂度为O(n),对于这一题来说,单从时间复杂度来算,其实已经算是最优解了,但是,对于常数时间,其实我们是可以继续进行优化的。那就是用数组代替栈,因为数组的寻址是很快的,所以,如果想进一步提升,就需要用数组代替栈去优化常数时间了。这里就直接把代码给大家了,有兴趣的同学可以研究研究。效率提升也还是蛮大的。

public static int sumSubarrayMins(int[] arr) {
		int[] stack = new int[arr.length];
		int[] left = nearLessEqualLeft(arr, stack);
		int[] right = nearLessRight(arr, stack);
		long ans = 0;
		for (int i = 0; i < arr.length; i++) {
			long start = i - left[i];
			long end = right[i] - i;
			ans += start * end * (long) arr[i];
			ans %= 1000000007;
		}
		return (int) ans;
	}

	public static int[] nearLessEqualLeft(int[] arr, int[] stack) {
		int N = arr.length;
		int[] left = new int[N];
		int size = 0;
		for (int i = N - 1; i >= 0; i--) {
			while (size != 0 && arr[i] <= arr[stack[size - 1]]) {
				left[stack[--size]] = i;
			}
			stack[size++] = i;
		}
		while (size != 0) {
			left[stack[--size]] = -1;
		}
		return left;
	}

	public static int[] nearLessRight(int[] arr, int[] stack) {
		int N = arr.length;
		int[] right = new int[N];
		int size = 0;
		for (int i = 0; i < N; i++) {
			while (size != 0 && arr[stack[size - 1]] > arr[i]) {
				right[stack[--size]] = i;
			}
			stack[size++] = i;
		}
		while (size != 0) {
			right[stack[--size]] = N;
		}
		return right;
	}

题目二.斐波那契数列

斐波那契数列大家都知道,包括我们要求斐波那契数列第n项,相信大家也都知道,正常我们来求,一个一个算呗,1 1 2 3 5 8 12 ......    是一个O(n)的方法是最优解吗? 不是,不是最优解,难道还有比O(n)还好的方法嘛,有O(log N) 逆天了,哇,怎么可能呢,你怎么能通过log N解决呢,有可能,来自于哪里,注意,我们都知道斐波那契数列是 F(n) = F(n-1) + F(n - 2) 并且第一项是 1 第二项也是 1 的严格递推式。面对这种除了初始项 剩下项是严格的递推式都有log N的方法。不光是斐波那契数列,只要是严格递推式,都有logN的方法。那什么样的式子没有logN的方法呢,有条件转移的式子没有logN的方法,比如说有个 if  else  在这种条件下是一个式子,在另一种条件下又是另一种式子,这种的就没有logN的方法。  这里用到了一点的线性代数,但是它并不难,什么意思呢,就是这样的, F(N) = F(N-1) + F(N-2)的话,第N项和N-1项和N-2项是严格递推关系,那么来看,它减的最多的是谁,是 2 我们说他是一个2阶递推,2阶递推啥意思,我们知道斐波那契数列 F1 = 1, F2 = 1 ,它必存在下列关系。

\left | F3,F2 \right | = \left | F2,F1 \right | * \begin{vmatrix} a & b \\ c & d \end{vmatrix}

线性代数就是为了解决严格递推第几项的问题才发明的,所以不要问为什么,这是线性代数的思想基础。同样道理

\left | F4,F3 \right | = \left | F3,F2 \right | * \begin{vmatrix} a & b \\ c & d \end{vmatrix}

这个 2 * 2的矩阵到底是啥玩意呢,不知道,我们可以算出来。因为斐波那契数列前几项我们是可以列出来的对不对,来,我们来实际算一下。

                              

有啥用,我们继续往下看。

通过上图我们可以看到,我们如果想求斐波那契数列的第n项,关键点再求某个矩阵的某一个次方,只要你这个矩阵的某个次方算的足够快,我这个斐波那契数列第n项就算的足够快。对不对,那下面这个问题就来了,一个矩阵的n次方怎么算的足够快,我们先看一个特别特别基本的问题,一个数的n次方怎么算最快,比如 10^75 怎么算最快 我们把相同的方式用到矩阵上,算矩阵的n次方不就快了嘛。那10^75怎么算最快呢,如果我们一个一个乘,就需要乘74次,这样就是一个O(n)的方法。它不够快, 75次方的二进制是啥,我们看 75 怎么分解  75 = 64 + 8 + 2 + 1 所以 75的二进制就是 1001011,接下来我们看如下图。

我们先二进制为 1 的位置,代表需要一个 10 的对应的次方。数字的n次方解决了,那矩阵呢,也是一样的。我们看上图最开始 的 1 那么放在矩阵中应该是什么呢,单位矩阵,就是对角线都为 1 ,其余全为 0 的矩阵。

public class FibonacciProblem {

	public static int f1(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		return f1(n - 1) + f1(n - 2);
	}

	public static int f2(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		int res = 1;
		int pre = 1;
		int tmp = 0;
		for (int i = 3; i <= n; i++) {
			tmp = res;
			res = res + pre;
			pre = tmp;
		}
		return res;
	}

	// O(logN)
	public static int f3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return 1;
		}
		// [ 1 ,1 ]
		// [ 1, 0 ]
		int[][] base = { 
				{ 1, 1 }, 
				{ 1, 0 } 
				};
		int[][] res = matrixPower(base, n - 2);
		return res[0][0] + res[1][0];
	}

	public static int[][] matrixPower(int[][] m, int p) {
		int[][] res = new int[m.length][m[0].length];
		for (int i = 0; i < res.length; i++) {
			res[i][i] = 1;
		}
		// res = 矩阵中的1
		int[][] t = m;// 矩阵1次方
		for (; p != 0; p >>= 1) {
			if ((p & 1) != 0) {
				res = product(res, t);
			}
			t = product(t, t);
		}
		return res;
	}

	// 两个矩阵乘完之后的结果返回
	public static int[][] product(int[][] a, int[][] b) {
		int n = a.length;
		int m = b[0].length;
		int k = a[0].length; // a的列数同时也是b的行数
		int[][] ans = new int[n][m];
		for(int i = 0 ; i < n; i++) {
			for(int j = 0 ; j < m;j++) {
				for(int c = 0; c < k; c++) {
					ans[i][j] += a[i][c] * b[c][j];
				}
			}
		}
		return ans;
	}

	

	public static void main(String[] args) {
		int n = 19;
		System.out.println(f1(n));
		System.out.println(f2(n));
		System.out.println(f3(n));
		System.out.println("===");


	}

}

题目三、返回n年后牛的数量

第一年农场有1只成熟的母牛A,往后的每年:
1)每一只成熟的母牛都会生一只母牛
2)每一只新出生的母牛都在出生的第三年成熟
3)每一只母牛永远不会死 返回N年后牛的数量

题目呢很好理解,然后大家观察下面的例子,是不是一下子就看出公式是什么了。

然后我们就开始推这个矩阵是什么

                                       

这样是不是就知道矩阵是什么了,看是不是和斐波那契数列一样,接下就知道该怎么办了吧

public class FibonacciProblem {
    public static int c1(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2 || n == 3) {
			return n;
		}
		return c1(n - 1) + c1(n - 3);
	}

	public static int c2(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2 || n == 3) {
			return n;
		}
		int res = 3;
		int pre = 2;
		int prepre = 1;
		int tmp1 = 0;
		int tmp2 = 0;
		for (int i = 4; i <= n; i++) {
			tmp1 = res;
			tmp2 = pre;
			res = res + prepre;
			pre = tmp1;
			prepre = tmp2;
		}
		return res;
	}

	public static int c3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2 || n == 3) {
			return n;
		}
		int[][] base = { 
				{ 1, 1, 0 }, 
				{ 0, 0, 1 }, 
				{ 1, 0, 0 } };
		int[][] res = matrixPower(base, n - 3);
		return 3 * res[0][0] + 2 * res[1][0] + res[2][0];
	}

    public static int[][] matrixPower(int[][] m, int p) {
		int[][] res = new int[m.length][m[0].length];
		for (int i = 0; i < res.length; i++) {
			res[i][i] = 1;
		}
		// res = 矩阵中的1
		int[][] t = m;// 矩阵1次方
		for (; p != 0; p >>= 1) {
			if ((p & 1) != 0) {
				res = product(res, t);
			}
			t = product(t, t);
		}
		return res;
	}

	// 两个矩阵乘完之后的结果返回
	public static int[][] product(int[][] a, int[][] b) {
		int n = a.length;
		int m = b[0].length;
		int k = a[0].length; // a的列数同时也是b的行数
		int[][] ans = new int[n][m];
		for(int i = 0 ; i < n; i++) {
			for(int j = 0 ; j < m;j++) {
				for(int c = 0; c < k; c++) {
					ans[i][j] += a[i][c] * b[c][j];
				}
			}
		}
		return ans;
	}


    public static void main(String[] args) {
		int n = 19;

		System.out.println(c1(n));
		System.out.println(c2(n));
		System.out.println(c3(n));
		System.out.println("===");

	}

}

题目四、给定一个数N,想象只由0和1两种字符,组成的所有长度为N的字符串 如果某个字符串,任何0字符的左边都有1紧挨着,认为这个字符串达标 返回有多少达标的字符串

通过观察我们发现,这不就是 初始值为 1 和 2  的斐波那契数列嘛。代码也很简单,就直接给大家了。

public class FibonacciProblem {


	public static int[][] matrixPower(int[][] m, int p) {
		int[][] res = new int[m.length][m[0].length];
		for (int i = 0; i < res.length; i++) {
			res[i][i] = 1;
		}
		// res = 矩阵中的1
		int[][] t = m;// 矩阵1次方
		for (; p != 0; p >>= 1) {
			if ((p & 1) != 0) {
				res = product(res, t);
			}
			t = product(t, t);
		}
		return res;
	}

	// 两个矩阵乘完之后的结果返回
	public static int[][] product(int[][] a, int[][] b) {
		int n = a.length;
		int m = b[0].length;
		int k = a[0].length; // a的列数同时也是b的行数
		int[][] ans = new int[n][m];
		for(int i = 0 ; i < n; i++) {
			for(int j = 0 ; j < m;j++) {
				for(int c = 0; c < k; c++) {
					ans[i][j] += a[i][c] * b[c][j];
				}
			}
		}
		return ans;
	}

	public static int s1(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return n;
		}
		return s1(n - 1) + s1(n - 2);
	}

	public static int s2(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return n;
		}
		int res = 2;
		int pre = 1;
		int tmp = 0;
		for (int i = 3; i <= n; i++) {
			tmp = res;
			res = res + pre;
			pre = tmp;
		}
		return res;
	}

	public static int s3(int n) {
		if (n < 1) {
			return 0;
		}
		if (n == 1 || n == 2) {
			return n;
		}
		int[][] base = { { 1, 1 }, { 1, 0 } };
		int[][] res = matrixPower(base, n - 2);
		return 2 * res[0][0] + res[1][0];
	}

	

	public static void main(String[] args) {
		int n = 19;
		System.out.println(s1(n));
		System.out.println(s2(n));
		System.out.println(s3(n));
		System.out.println("===");


	}

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/713144.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

享元和代理模式

文章目录 享元模式1.引出享元模式1.展示网站项目需求2.传统方案解决3.问题分析 2.享元模式1.基本介绍2.原理类图3.外部状态和内部状态4.类图5.代码实现1.AbsWebSite.java 抽象的网站2.ConcreteWebSite.java 具体的网站&#xff0c;type属性是内部状态3.WebSiteFactory.java 网站…

《C语言》动态内存管理

文章目录 一、动态内存分配二、关于动态内存开辟的函数1、malloc2、free3、calloc4、realloc 三、常见的动态内存的错误1、对NULL指针的解引用操作2、对动态开辟空间的越界访问3、对非动态开辟内存使用free释放4、释放free释放一块动态开辟的内存的一部分5、对同一块动态内存多…

Ubuntu基础-VirtualBox安装增强功能

目录 零. 前言 一. 安装 1.点击安装增强功能 2.点击光盘图标 3.复制到新文件夹 4.运行命令 5.重启系统 6.成果展示 二. 打开共享 1.共享粘贴 ​编辑2.共享文件夹 三.总结 安装步骤 打开共享粘贴功能&#xff1a; 打开共享文件夹功能&#xff1a; 零. 前言 在使用…

设计模式-代理模式Proxy(结构型)

代理模式&#xff08;Proxy&#xff09; 代理模式是一种结构型模式&#xff0c;它可以通过一个类代理另一个类的功能。代理类持有被代理类的引用地址&#xff0c;负责将请求转发给代理类&#xff0c;并且可以在转发前后做一些处理 图解 角色 抽象主题&#xff08;Subject&…

upload-labs第九关教程

upload-labs第九关教程 一、源代码分析代码审计::$DATA介绍 二、绕过分析特殊字符::$data绕过上传eval.php使用burpsuite抓包进行修改放包&#xff0c;查看是否上传成功使用中国蚁剑进行连接 一、源代码分析 代码审计 $is_upload false; $msg null; if (isset($_POST[submi…

抖音a_bogus,mstoken爬虫逆向补环境2024-06-15最新版

抖音a_bogus,mstoken爬虫逆向补环境2024-06-15最新版 接口及参数 打开网页版抖音&#xff0c;右键视频进入详情页。F12打开控制台筛选detail&#xff0c;然后刷新网页&#xff0c;找到请求。可以发现我们本次的参数目标a_bogus&#xff0c;msToken在cookie中可以获得&#xf…

无公网ip、服务器无法上网如何实现外网访问

在ipv4的大环境下&#xff0c;公网ip和车牌号一样抢手&#xff0c;一个固定公网ip价格非常昂贵&#xff0c;中小企业承担不起&#xff0c;也不愿意在上面投入&#xff1b;同时勒索病毒日益猖獗&#xff0c;企业信息化负责人为了保证数据安全性&#xff0c;干脆禁止服务器上外网…

分布式微服务: springboot底层机制实现

springboot底层机制实现 搭建SpringBoot底层机制开发环境ConfigurationBean会发生什么,并分析机制提出问题: SpringBoot 是怎么启动Tomcat, 并可以支持访问Controller源码分析: SpringApplication.run()SpringBoot的debug流程 实现SpringBoot底层机制[Tomcat启动分析 Spring容…

在向量数据库中存储多模态数据,通过文字搜索图片

在向量数据中存储多模态数据&#xff0c;通过文字搜索图片&#xff0c;Chroma 支持文字和图片&#xff0c;通过 OpenClip 模型对文字以及图片做 Embedding。本文通过 Chroma 实现一个文字搜索图片的功能。 OpenClip CLIP&#xff08;Contrastive Language-Image Pretraining&…

课设--学生成绩管理系统(一)

欢迎来到 Papicatch的博客 文章目录 &#x1f349;技术核心 &#x1f349;引言 &#x1f348;标识 &#x1f348;背景 &#x1f348;项目概述 &#x1f348; 文档概述 &#x1f349;可行性分析的前提 &#x1f348;项目的要求 &#x1f348;项目的目标 &#x1f348;…

Java入门4: 泛型和集合

Java入门4: 泛型和集合 MangoGO 芒狗狗 目录 4 泛型和集合4.1 泛型4.2 Collection4.3 List4.4 ArrayList4.5 Map4.6 HashMap4.7 Set 和 HashSet4.8 Collections参考代码4 泛型和集合 Java 使用集合来组织和管理对象,本节我们重点讲解泛型和集合。主要介绍 Collection、List、A…

C#医院体检系统源码 PEIS源码 系统核心功能、特点、类型、设备对接-PACS放射科设备对接:DR、CT、MRI、钼靶。

C#医院体检系统源码 PEIS源码 系统核心功能、特点、类型、设备对接-PACS放射科设备对接:DR、CT、MRI、钼靶。 体检系统是为体检中心、医院体检科等体检机构专门开发的全流程管理系统。该系统通过软件实现检测仪器数据的自动提取&#xff0c;内置多级医生工作台&#xff0c;旨在…

远程连接服务器的工具?

远程连接服务器工具是现代工作环境中不可或缺的工具之一。它允许用户通过网络远程访问和控制远程服务器&#xff0c;为用户提供了更加便捷和高效的工作方式。无论是远程办公、远程维护还是云计算&#xff0c;远程连接服务器工具都发挥着重要的作用。 在众多远程连接服务器工具…

LabVIEW RT在非NI硬件上的应用与分析

LabVIEW RT&#xff08;实时操作系统&#xff09;可运行在非NI&#xff08;National Instruments&#xff09;硬件上&#xff0c;如研华工控机&#xff0c;但需要满足特定硬件要求。本文从硬件要求、开发和运行差异、可靠性、稳定性、优势和成本等多角度详细分析在非NI硬件上运…

【Mac】Luminar Neo for mac(图像编辑软件)软件介绍及同类型软件比较

Luminar Neo软件介绍 Luminar Neo 是一款由 Skylum 开发的功能强大的照片编辑软件&#xff0c;专为摄影师和摄影爱好者设计。它适用于 Mac 和 Windows 平台&#xff0c;提供了一系列先进的编辑工具和功能&#xff0c;使用户能够轻松提升和优化他们的照片。以下是 Luminar Neo …

沸点 | LDBC与SIGMOD联合研讨,推动图数据库创新与标准化

当地时间6月9日&#xff0c;国际基准官方平台关联数据基准委员会&#xff08;LDBC&#xff0c;Linked Data Benchmark Council&#xff09;与SIGMOD 2024&#xff08;是全球最具国际影响力的数据管理、数据处理和数据存储领域的学术顶会之一&#xff0c;ACM SIGMOD/Big Data in…

非关系型数据库NoSQL数据层解决方案 之 redis springboot整合与读写操作 2024详解以及window版redis5.0.14下载百度网盘

redis下载安装以及基本使用 下载地址 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;0410 一个名对应一个数值 内存级 在内存里进行操作 准备启动 我们现在就有一个redis客户端的服务器了 我们再启动一个cmd 操作redis数据库 redis里面的基本数据类型有五种 …

用Canvas绘制2D平面近大远小的马路斑马线

用Canvas绘制2D平面近大远小的马路斑马线 设置canvas和上下文&#xff1a; 首先&#xff0c;你需要创建一个元素&#xff0c;并获取其2D渲染上下文。 绘制斑马线&#xff1a; 使用fillRect或strokeRect方法绘制斑马线。你可以通过循环和计算来绘制多条具有不同宽度和间隔的…

LeetCode20.有效的括号

题目描述 分析 我们刚上来的思路可能是&#xff1a;找出这三种括号的个数 如果都是偶数 说明匹配 但是这里还有一个顺序问题 比如 " )( "这样是不匹配的&#xff01; 所以这种思路不可取&#xff01; 我们想 如果遇到左括号&#xff0c;把他读到一个顺序表中&#…

等级考试3-2021年3月题

作业&#xff1a; #include <iostream> using namespace std; int chonghe(int,int,int,int); int main(){int a[1000],b[1000];int n,ma0;cin>>n;for(int i0;i<n;i){cin>>a[i]>>b[i];}for(int i0;i<n;i){for(int ji1;j<n;j){mamax(ma,chongh…