深度学习(七)——神经网络的卷积操作

卷积操作

一、torch.nn中Convolution Layers函数的介绍

1. 参数介绍

  • nn.Conv1d: Conv取自Convolution的前四个字母,1d代表的是一个一维操作。

  • nn.Conv2d: 2d表示是一个二维的操作,比如图像就是一个二维的。

  • 其余参数不常用,见官网文档:torch.nn — PyTorch 2.0 documentation

2. torch.nn和torch.nn.functional的区别

  • torch.nn是对torch.nn.functional的一个封装,让使用torch.nn.functional里面的包的时候更加方便

  • torch.nn包含了torch.nn.functional,打个比方,torch.nn.functional相当于开车的时候齿轮的运转,torch.nn相当于把车里的齿轮都封装好了,为我们提供一个方向盘

  • 如果只是简单应用,会torch.nn就好了。但要细致了解卷积操作,需要深入了解torch.nn.functional

  • 打开torch.nn.functional的官方文档,可以看到许多跟卷积相关的操作:torch.nn.functional — PyTorch 2.0 documentation

二、torch.nn.functional.conv2d 介绍

官网文档:torch.nn.functional.conv2d — PyTorch 2.0 documentation

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

1. 参数详解

  • input: 输入,数据类型为tensor,形状尺寸规定为:(minibatch, 几个通道(in_channels), 高, 宽)

  • weight: 权重。更专业地来说可以叫卷积核,形状尺寸规定为:(输出的通道(out_channel), \(in\_channel\over{groups}\)(groups一般取1), 高, 宽 )

  • bias: 偏置。

  • strids: 步幅。

  • padding: 填充。

2. 举例讲解参数strids

(1)理论

输入一个5×5的图像,其中的数字代表在每个像素中的颜色显示。卷积核设置为3×3的大小。

  • strids参数的输入格式是_单个数_或者形式为 (sH,sW) 的元组,可以理解成:比如输入单个数:strids=1,每次卷积核在图像中向上下或左右移1位;如果输入_strids=(2,3)_,那么每次卷积核在图像中左右移动(横向移动)时,是移动2位,在图像中上下移动(纵向移动)时,是移动3位。

  • 本例设置_strids=1_

第一次移位:

  • 基于上述的假设,在做卷积的过程中,需要将卷积核将图像的前三行和前三列进行匹配:

  • 在匹配过后,进行卷积计算对应位相乘然后相加,即

    1×1+2×2+0×1+0×0+1×1+2×0+1×2+2×1+1×0=10

  • 上面的得出的\(10\)可以赋值给矩阵,然后作为一个输出

  • 之后卷积核可以在图像中进行一个移位,可以向旁边走1位或2位,如下图(向右走2位)。具体走多少位由strids参数决定,比如_strids=2_,那就是走2位。本例设置stride=1。

第二次移位:

  • 向右移动一位,进行卷积计算:

    2×1+0×2+3×1+1×0+2×1+3×0+2×2+1×1+0×0=12

  • \(12\)可以赋值给矩阵,然后作为一个输出

第三次移位:

  • 向右移动一位,进行卷积计算:

0×1+3×2+1×1+2×0+3×1+1×0+1×2+0×1+0×0=12

  • \(12\)可以赋值给矩阵,然后作为一个输出

  • 第三次移位后,发现卷积核已经没办法向右移位,进行匹配了。所以我们在纵向上,向下走:

第四次移位:

  • 在最开始的位置上,向下移动一位,进行卷积计算:

0×1+1×2+2×1+1×0+2×1+1×0+5×2+2×1+2×0=18

  • \(18\)可以赋值给矩阵,然后作为一个输出

第五次移位:

  • 在上面的基础上,向右移一位,进行卷积计算:

    1×1+2×2+3×1+2×0+1×1+0×0+2×2+3×1+1×0=16

  • \(16\)可以赋值给矩阵,然后作为一个输出

以此类推,走完整个图像,最后输出的矩阵如下图。这个矩阵是卷积后的输出

(2)程序操作

将上面的过程写到程序内:

import torch
import torch.nn.functional as F

# 构造输入图像(input参数输入的数据类型为tensor,并且为2维)
input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]])

# 构造卷积核(数据类型也是tensor,并且为2维)
kernel=torch.tensor([[1,2,1],
                     [0,1,0],
                     [2,1,0]])

#查看尺寸,输出后发现并不符合参数输入的尺寸标准,所以需要进一步转换数据
print(input.shape) #[Run]  torch.Size([5, 5])
print(kernel.shape) #[Run]  torch.Size([3, 3])

#转换input、kernel数据
input=torch.reshape(input,(1,1,5,5))  #torch.reshape(tensor数据,想变成的格式尺寸(batch=1,通道=1,5×5))
kernel=torch.reshape(kernel,(1,1,3,3))

#查看尺寸,输出后发现符合参数输入的尺寸标准
print(input.shape) #[Run]  torch.Size([1, 1, 5, 5])
print(kernel.shape) #[Run]  torch.Size([1, 1, 3, 3])

# 进行卷积操作
#stride=1,输出结果与上面矩阵一致
output=F.conv2d(input,kernel,stride=1)
print(output)
"""
[Run]
tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])
"""

#stride=2
output2=F.conv2d(input,kernel,stride=2)
print(output2)
"""
[Run]
tensor([[[[10, 12],
          [13,  3]]]])
"""

3. 举例讲解参数padding

padding的作用是在输入图像的左右两边进行填充,padding的值决定填充的大小有多大,它的输入形式为一个_整数_或者一个_元组 ( padH, padW )_,其中,padH=高padW=宽默认padding=0,即不进行填充。

(1)理论

  • 仍输入上述的5×5的图像,并设置padding=1,那么输入图像将会变成下图,即图像的上下左右都会拓展一个像素,然后这些空的地方像素(里面填充的数据)都默认为0。

  • 按上面的顺序进行卷积计算,第一次移位时在左上角3×3的位置,卷积计算公式变为:

    \[0×1+0×2+0×1+0×0+1×1+2×0+0×2+0×1+1×0=1 \]

  • 以此类推,完成后面的卷积计算,并输出矩阵

(2)程序操作

在上面的代码后,加入这串代码,以验证padding的操作:

output3=F.conv2d(input,kernel,stride=1,padding=1)
print(output3)
"""
[Run]
tensor([[[[ 1,  3,  4, 10,  8],
          [ 5, 10, 12, 12,  6],
          [ 7, 18, 16, 16,  8],
          [11, 13,  9,  3,  4],
          [14, 13,  9,  7,  4]]]])
"""

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/711911.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java——变量作用域和生命周期

一、作用域 1、作用域简介 在Java中,作用域(Scope)指的是变量、方法和类在代码中的可见性和生命周期。理解作用域有助于编写更清晰、更高效的代码。 2、作用域 块作用域(Block Scope): 块作用域是指在…

如何解决mfc100u.dll丢失问题,关于mfc100u.dll丢失的多种解决方法

在计算机使用过程中,我们常常会遇到一些错误提示,其中之一就是“计算显示缺失mfc100u.dll”。这个问题可能会影响到我们的正常使用,因此了解它的原因、表现以及解决方法是非常重要的。小编将详细介绍计算显示缺失mfc100u.dll的问题&#xff0…

区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现BP-ABKDE的BP神经网络自适应带…

java安装并配置环境

安装前请确保本机没有java的残留,否则将会安装报错 1.安装java jdk:安装路径Java Downloads | Oracle 中国 百度网盘链接:https://pan.baidu.com/s/11-3f2QEquIG3JYw4syklmQ 提取码:518e 2.双击 按照流程直接点击下一步&#x…

个人网站制作 Part 25 添加实时聊天功能 | Web开发项目添加页面缓存

文章目录 👩‍💻 基础Web开发练手项目系列:个人网站制作🚀 添加实时聊天功能🔨使用聊天服务🔧步骤 1: 选择聊天服务🔧步骤 2: 安装Socket.io🔧步骤 3: 创建Socket.io服务器 &#x1…

基于flask的网站如何使用https加密通信-问题记录

文章目录 项目场景:问题1问题描述原因分析解决步骤解决方案 问题2问题描述原因分析解决方案 参考文章 项目场景: 项目场景:基于flask的网站使用https加密通信一文中遇到的问题记录 问题1 问题描述 使用下面的命令生成自签名的SSL/TLS证书和…

【Apache Doris】周FAQ集锦:第 6 期

【Apache Doris】周FAQ集锦:第 6 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目! 在这个栏目中,每周将筛选社区反馈的热门问题和话题,重点回答并进行深入探讨。旨在为广大用户和…

【实践功能记录6】表格列悬浮展示tooltip信息

需求描述&#xff1a; 鼠标悬浮在表格的IP字段上时&#xff0c;使用tooltip展示IP信息&#xff0c;如图&#xff1a; 1.封装根据IP展示信息的组件 请求接口获取IP信息&#xff0c;注意请求接口时防抖 <!-- 根据IP展示资产信息 --> <template><div><el-…

谷歌重塑Transformer:无限记忆力,无限长输入,登上Nature

Infini-attention机制为Transformer在具有挑战性的长语境任务中释放出了新的能力&#xff0c;对于调整现有模型以适应长输入也非常实用。 谷歌的最新研究成果Infini-attention机制&#xff08;无限长注意力&#xff09;将内存压缩引入了传统注意力机制&#xff0c;并在单个Tra…

视图-什么是(VIEW)?怎么创建(CREATE VIEW)?怎么删除(DROP)?怎么用(SELECT/INSERT/UPDATE/DELETE)?

一、引言 之前对数据库的操作都是针对基本关系表&#xff0c;操作都是在数据库的全局逻辑模式上进行的&#xff0c;而在实际的数据库系统中&#xff0c;可能用户只关心或只被允许使用数据库中的某些基本关系表或基本关系表中的某些属性列&#xff0c;这些数据构成了数据库的外…

短视频文案素材哪里找?推荐几个既好看又好用的素材网站

我们在做短视频的同时&#xff0c;一般需要一些视频&#xff0c;文案&#xff0c;图片&#xff0c;音频&#xff0c;来添加短视频的突出点&#xff0c;那么这些短视频文案去哪里找呢? 蛙学网 想要做出容易上热门的短视频文案&#xff0c;你一定要找到合适的短视频素材&#…

鸿蒙轻内核M核源码分析系列二一 02 文件系统LittleFS

1、LFS文件系统结构体介绍 会分2部分来介绍结构体部分&#xff0c;先介绍LittleFS文件系统的结构体&#xff0c;然后介绍LiteOS-M内核中提供的和LittleFS相关的一些结构体。 1.1 LittleFS的枚举结构体 在openharmony/third_party/littlefs/lfs.h头文件中定义LittleFS的枚举、…

【人工智能】开发AI可能获刑?加州1047草案详解

引言 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;其应用领域不断扩展&#xff0c;但同时也引发了诸多争议和监管问题。近期&#xff0c;加州参议院以32比1的压倒性投票通过了1047号草案&#xff0c;又称《前沿人工智能模型安全可靠创新法案》。这一草案…

贪心算法学习四

例题一 解法&#xff08;暴⼒解法 -> 贪⼼&#xff09;&#xff1a; 暴⼒解法&#xff1a; a. 依次枚举所有的起点&#xff1b; b. 从起点开始&#xff0c;模拟⼀遍加油的流程 贪⼼优化&#xff1a; 我们发现&#xff0c;当从 i 位置出发&#xff0c;⾛了 step 步…

【七合一】字典词典成语古诗词造句英语单词文库

帝国CMS7.5 UTF-8 系统开源&#xff0c;不限域名 采用静态伪静态&#xff08;会缓存静态文件&#xff09; 一款7合一的字词句诗典籍模板&#xff0c;包含字典、词典、成语、名句、诗词、古籍、英语、作文、等等。是一款养站神器。 作文范文,作文范文可生成word文档下载能自由…

Ubuntu server 24 (Linux) 安装部署samba服务器 共享文件目录 windows访问

1 安装 sudo apt update sudo apt-get install samba #启动服务 sudo systemctl restart smbd.service sudo systemctl enable smbd.service #查看服务 2 创建用户 #创建系统用户 sudo useradd test2 #配置用户密码 sudo smbpasswd -a test2 # smbpasswd: -a添加用户 …

408数据结构-图的遍历 自学知识点整理

前置知识&#xff1a;图的存储与基本操作 图的遍历是指从图的某一顶点出发&#xff0c;按照某种搜索方法沿着图中的边对图中的所有顶点访问一次&#xff0c;且仅访问一次。因为树是一种特殊的图&#xff0c;所以树的遍历实际上也可以视为一种特殊的图的遍历。图的遍历算法是求解…

【Apache Doris】Compaction 原理 | 实践全析

【Apache Doris】Compaction 原理 | 实践全析 一、Compaction 前文概要二、Compaction 版本策略三、Compaction 类型说明四、Compaction 工程实现五、Compaction 生产实践 作者 &#xff5c; 俞剑波 一、Compaction 前文概要 LSM-Tree 简介 LSM-Tree&#xff08; Log Structu…

为什么笔记本电脑触控板不工作?这里有你想要的答案和解决办法

序言 你的笔记本电脑触控板停止工作了吗?值得庆幸的是,这个令人沮丧的问题通常很容易解决。以下是笔记本电脑触控板问题的最常见原因和修复方法。 触控板被功能键禁用 大多数(如果不是全部的话)Windows笔记本电脑都将其中一个功能键用于禁用和启用笔记本电脑触控板。按键…

Type-C接口显示器:C口高效连接与无限可能 LDR

Type-C显示器C接口的未来&#xff1a;高效连接与无限可能 随着科技的飞速发展&#xff0c;我们的日常生活和工作中对于高效、便捷的连接方式的需求日益增加。在这样的背景下&#xff0c;Type-C接口显示器凭借其卓越的性能和广泛的兼容性&#xff0c;正逐渐崭露头角&#xff0c…