SOFTS: 时间序列预测的最新模型以及Python使用示例

近年来,深度学习一直在时间序列预测中追赶着提升树模型,其中新的架构已经逐渐为最先进的性能设定了新的标准。

这一切都始于2020年的N-BEATS,然后是2022年的NHITS。2023年,PatchTST和TSMixer被提出,最近的iTransformer进一步提高了深度学习预测模型的性能。

这是2024年4月《SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion》中提出的新模型,采用集中策略来学习不同序列之间的交互,从而在多变量预测任务中获得最先进的性能。

在本文中,我们详细探讨了SOFTS的体系结构,并介绍新的STar聚合调度(STAD)模块,该模块负责学习时间序列之间的交互。然后,我们测试将该模型应用于单变量和多变量预测场景,并与其他模型作为对比。

SOFTS介绍

SOFTS是 Series-cOre Fused Time Series的缩写,背后的动机来自于长期多元预测对决策至关重要的认识:

首先我们一直研究Transformer的模型,它们试图通过使用补丁嵌入和通道独立等技术(如PatchTST)来降低Transformer的复杂性。但是由于通道独立性,消除了每个序列之间的相互作用,因此可能会忽略预测信息。

iTransformer 通过嵌入整个序列部分地解决了这个问题,并通过注意机制处理它们。但是基于transformer的模型在计算上是复杂的,并且需要更多的时间来训练非常大的数据集。

另一方面有一些基于mlp的模型。这些模型通常很快,并产生非常强的结果,但当存在许多序列时,它们的性能往往会下降。

所以出现了SOFTS:研究人员建议使用基于mlp的STAD模块。由于是基于MLP的,所以训练速度很快。并且STAD模块,它允许学习每个序列之间的关系,就像注意力机制一样,但计算效率更高。

SOFTS架构

在上图中可以看到每个序列都是单独嵌入的,就像在iTransformer 中一样。

然后将嵌入发送到STAD模块。每个序列之间的交互都是集中学习的,然后再分配到各个系列并融合在一起。

最后再通过线性层产生预测。

这个体系结构中有很多东西需要分析,我们下面更详细地研究每个组件。

1、归一化与嵌入

首先使用归一化来校准输入序列的分布。使用了可逆实例的归一化(RevIn)。它将数据以单位方差的平均值为中心。然后每个系列分别进行嵌入,就像在iTransformer 模型。

在上图中我们可以看到,嵌入整个序列就像应用补丁嵌入,其中补丁长度等于输入序列的长度。

这样,嵌入就包含了整个序列在所有时间步长的信息。

然后将嵌入式系列发送到STAD模块。

2、STar Aggregate-Dispatch (STAD)

STAD模块是soft模型与其他预测方法的真正区别。使用集中式策略来查找所有时间序列之间的相互作用。

嵌入的序列首先通过MLP和池化层,然后将这个学习到的表示连接起来形成核(上图中的黄色块表示)。

核构建好了以后就进入了“重复”和“连接”的步骤,在这个步骤中,核表示被分派给每个系列。

MLP和池化层未捕获的信息还可以通过残差连接添加到核表示中。然后在融合(fuse)操作的过程中,核表示及其对应系列的残差都通过MLP层发送。最后的线性层采用STAD模块的输出来生成每个序列的最终预测。

与其他捕获通道交互的方法(如注意力机制)相比,STAD模块的主要优点之一是它降低了复杂性。

因为STAD模块具有线性复杂度,而注意力机制具有二次复杂度,这意味着STAD在技术上可以更有效地处理具有多个序列的大型数据集。

下面我们来实际使用SOFTS进行单变量和多变量场景的测试。

使用SOFTS预测

这里,我们使用 Electricity Transformer dataset 数据集。

这个数据集跟踪了中国某省两个地区的变压器油温。每小时和每15分钟采样一个数据集,总共有四个数据集。

我门使用neuralforecast库中的SOFTS实现,这是官方认可的库,并且这样我们可以直接使用和测试不同预测模型的进行对比。

在撰写本文时,SOFTS还没有集成在的neuralforecast版本中,所以我们需要使用源代码进行安装。

 pip install git+https://github.com/Nixtla/neuralforecast.git

然后就是从导入包开始。使用datasetsforecast以所需格式加载数据集,以便使用neuralforecast训练模型,并使用utilsforecast评估模型的性能。这就是我们使用neuralforecast的原因,因为他都是一套的

 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 
 from datasetsforecast.long_horizon import LongHorizon
 
 from neuralforecast.core import NeuralForecast
 from neuralforecast.losses.pytorch import MAE, MSE
 from neuralforecast.models import SOFTS, PatchTST, TSMixer, iTransformer
 
 from utilsforecast.losses import mae, mse
 from utilsforecast.evaluation import evaluate

编写一个函数来帮助加载数据集,以及它们的标准测试大小、验证大小和频率。

 def load_data(name):
     if name == "ettm1":
         Y_df, *_ = LongHorizon.load(directory='./', group='ETTm1')
         Y_df = Y_df[Y_df['unique_id'] == 'OT'] # univariate dataset
         Y_df['ds'] = pd.to_datetime(Y_df['ds'])
         val_size = 11520
         test_size = 11520
         freq = '15T'
     elif name == "ettm2":
         Y_df, *_ = LongHorizon.load(directory='./', group='ETTm2')
         Y_df['ds'] = pd.to_datetime(Y_df['ds']) 
         val_size = 11520
         test_size = 11520
         freq = '15T'
 
     return Y_df, val_size, test_size, freq

然后就可以对ETTm1数据集进行单变量预测。

1、单变量预测

加载ETTm1数据集,将预测范围设置为96个时间步长。

可以测试更多的预测长度,但我们这里只使用96。

 Y_df, val_size, test_size, freq = load_data('ettm1')
 
 horizon = 96

然后初始化不同的模型,我们将soft与TSMixer, iTransformer和PatchTST进行比较。

所有模型都使用的默认配置将最大训练步数设置为1000,如果三次后验证损失没有改善,则停止训练。

 models = [
     SOFTS(h=horizon, input_size=3*horizon, n_series=1, max_steps=1000, early_stop_patience_steps=3),
     TSMixer(h=horizon, input_size=3*horizon, n_series=1, max_steps=1000, early_stop_patience_steps=3),
     iTransformer(h=horizon, input_size=3*horizon, n_series=1, max_steps=1000, early_stop_patience_steps=3),
     PatchTST(h=horizon, input_size=3*horizon, max_steps=1000, early_stop_patience_steps=3)
 ]

然后初始化NeuralForecast对象训练模型。并使用交叉验证来获得多个预测窗口,更好地评估每个模型的性能。

 nf = NeuralForecast(models=models, freq=freq)
 nf_preds = nf.cross_validation(df=Y_df, val_size=val_size, test_size=test_size, n_windows=None)
 nf_preds = nf_preds.reset_index()

评估计算了每个模型的平均绝对误差(MAE)和均方误差(MSE)。因为之前的数据是缩放的,因此报告的指标也是缩放的。

 ettm1_evaluation = evaluate(df=nf_preds, metrics=[mae, mse], models=['SOFTS', 'TSMixer', 'iTransformer', 'PatchTST'])

从上图可以看出,PatchTST的MAE最低,而softts、TSMixer和PatchTST的MSE是一样的。在这种特殊情况下,PatchTST仍然是总体上最好的模型。

这并不奇怪,因为PatchTST在这个数据集中是出了名的好,特别是对于单变量任务。下面我们开始测试多变量场景。

2、多变量预测

使用相同的load_data函数,我们现在为这个多变量场景使用ETTm2数据集。

 Y_df, val_size, test_size, freq = load_data('ettm2')
 
 horizon = 96

然后简单地初始化每个模型。我们只使用多变量模型来学习序列之间的相互作用,所以不会使用PatchTST,因为它应用通道独立性(意味着每个序列被单独处理)。

然后保留了与单变量场景中相同的超参数。只将n_series更改为7,因为有7个时间序列相互作用。

 models = [SOFTS(h=horizon, input_size=3*horizon, n_series=7, max_steps=1000, early_stop_patience_steps=3, scaler_type='identity', valid_loss=MAE()),
           TSMixer(h=horizon, input_size=3*horizon, n_series=7, max_steps=1000, early_stop_patience_steps=3, scaler_type='identity', valid_loss=MAE()),
           iTransformer(h=horizon, input_size=3*horizon, n_series=7, max_steps=1000, early_stop_patience_steps=3, scaler_type='identity', valid_loss=MAE())]

训练所有的模型并进行预测。

 nf = NeuralForecast(models=models, freq='15min')
 
 nf_preds = nf.cross_validation(df=Y_df, val_size=val_size, test_size=test_size, n_windows=None)
 nf_preds = nf_preds.reset_index()

最后使用MAE和MSE来评估每个模型的性能。

 ettm2_evaluation = evaluate(df=nf_preds, metrics=[mae, mse], models=['SOFTS', 'TSMixer', 'iTransformer'])

上图中可以看到到当在96的水平上预测时,TSMixer large在ETTm2数据集上的表现优于iTransformer和soft。

虽然这与soft论文的结果相矛盾,这是因为我们没有进行超参数优化,并且使用了96个时间步长的固定范围。

这个实验的结果可能不太令人印象深刻,我们只在固定预测范围的单个数据集上进行了测试,所以这不是SOFTS性能的稳健基准,同时也说明了SOFTS在使用时可能需要更多的时间来进行超参数的优化。

总结

SOFTS是一个很有前途的基于mlp的多元预测模型,STAD模块是一种集中式方法,用于学习时间序列之间的相互作用,其计算强度低于注意力机制。这使得模型能够有效地处理具有许多并发时间序列的大型数据集。

虽然在我们的实验中,SOFTS的性能可能看起来有点平淡无奇,但请记住,这并不代表其性能的稳健基准,因为我们只在固定视界的单个数据集上进行了测试。

但是SOFTS的思路还是非常好的,比如使用集中式学习时间序列之间的相互作用,并且使用低强度的计算来保证数据计算的效率,这都是值得我们学习的地方。

并且每个问题都需要其独特的解决方案,所以将SOFTS作为特定场景的一个测试选项是一个明智的选择。

SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion

https://avoid.overfit.cn/post/6254097fd18d479ba7fd85efcc49abac

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/710441.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【第8章】Vue之第一个案例程序(前后端交互)

文章目录 前言一、前端1. 安装axios2. 使用axios3. axios.vue4. request.js5. axios.js 二、后端1.controller2.entity三、结果1. 列表查询2. 条件查询 总结 前言 接下来我们通过简单的前后端交互来完成界面数据的加载。 一、前端 1. 安装axios npm install axios2. 使用axi…

springboot3 基础特性(1)

文章目录 一、SpringApplication三种方式1.1 基础方式1.2.自定义 SpringApplication1.3、FluentBuilder API 二、自定义Banner三、Profiles3.1 什么是 Profiles ?3.2 声明Profiles3.3 激活配置文件3.3.1 分组3.3.2 环境包含3.3.3 激活方式3.3.4 配置优先级 一、Spri…

逻辑这回事(五)---- 资源优化

基础篇 Memory 避免细碎的RAM。将大的RAM拆分成多个小RAM,并根据地址关断可以优化功耗,但把多个小RAM合成大RAM可以优化面积。Block RAM和分布式RAM合理选择。根据存储容量,对Block RAM和分布式RAM的实现面积和功耗进行评估,选择…

Opus从入门到精通(五)OggOpus封装器全解析

Opus从入门到精通(五)OggOpus封装器全解析 为什么要封装 前面Opus从入门到精通(四)Opus解码程序实现提到如果不封装会有两个问题: 无法从文件本身获取音频的元数据(采样率,声道数,码率等)缺少帧分隔标识,无法从连续的文件流中分隔帧(尤其是vbr情况) 针对上面的问题我们可以…

SwiGLU激活函数与GLU门控线性单元原理解析

前言 SwiGLU激活函数在PaLM,LLaMA等大模型中有广泛应用,在大部分测评中相较于Transformer FFN中所使用的ReLU函数都有提升。本篇先介绍LLaMA中SwiGLU的实现形式,再追溯到GLU门控线性单元,以及介绍GLU的变种,Swish激活…

【Windows】DNG Converter(DNG格式转换器)软件介绍

软件介绍 DNG Converter是一款免费软件,用于将数码相机原始RAW图像文件转换为DNG格式(数字负片)文件。DNG格式是一种数字负片格式,它旨在成为一种行业标准,以便摄影师可以使用一个统一的格式来存储其相机拍摄的原始图…

深度学习笔记: 最详尽估算送达时间系统设计

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家! 估算送达时间 1. 问题陈述 构建一个模型来估算在给定订单详情、市场条件和交通状况下的总送达时间。 为…

两个 SASS 分分析案例

1. shfl_sync的 机器 sass 汇编代码 1.1 实验目标 对比 int ret __shfl_sync(0xFFFFFFFF, value, 5, 16); int ret __shfl_sync(0xFFFFFFFF, value, 5, 32); 不同的 sass 汇编代码 1.2 实验代码 源代码 shfl 16&#xff1a; shft_sync_test_16.cu #include <iostream…

LDR6500:手机电脑拓展坞转接器方案的卓越之选

随着科技的飞速发展&#xff0c;手机和电脑已成为我们日常生活中不可或缺的工具。然而&#xff0c;它们的接口有限&#xff0c;经常难以满足我们多样化的需求。这时&#xff0c;一款高效、稳定的拓展坞转接器就显得尤为重要。LDR6500&#xff0c;作为乐得瑞科技精心研发的USB P…

【已解决】引入 element 组件无法使用编译错误 ERROR Failed to compile with 1 error

如果大家使用这个vue 配合 element 框架不熟练&#xff0c;当你顺利按照文档安装好 vue 和 element 的时候想要使用element 的组件时候确无法展示出来&#xff0c;甚至报错。不妨看看是不是这个问题&#xff0c; 1.首先使用element 的时候&#xff0c;前提是把必须要的 elemen…

C++入门 vector介绍及使用

目录 vector的介绍及使用 vector常用接口的介绍及使用 vector的定义 vector iterator 的使用 vector 空间增长问题 vector 增删查改 push_back/pop_back insert & erase & find operator[ ]的遍历 vector的介绍及使用 vector的文档介绍 vector是表示可变大…

热镀锌钢板耐液体性能测 彩钢板抗拉强度检测

钢板检测范围&#xff1a;钢板、彩钢板、不锈钢板、耐磨钢板、合金钢板、压型钢板、冷轧钢板、弹簧钢板、碳钢板、热轧钢板、厚钢板、热镀锌钢板、冲孔钢板、船用钢板、硅钢板、花纹钢板、压力容器钢板、耐候钢板、 钢板检测项目包括化学性能检测、性能检测、机械性能检测、老…

图解Transformer学习笔记

教程是来自https://github.com/datawhalechina/learn-nlp-with-transformers/blob/main/docs/ 图解Transformer Attention为RNN带来了优点&#xff0c;那么有没有一种神经网络结构直接基于Attention构造&#xff0c;而不再依赖RNN、LSTM或者CNN的结构&#xff0c;这就是Trans…

[2024-06]-[大模型]-[Ollama]- WebUI

主要涉及要部署的前端webui是来源于:https://github.com/open-webui/open-webui 正常就使用: docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-web…

深入浅出 Babel:现代 JavaScript 的编译器

在现代前端开发中&#xff0c;JavaScript 的版本更新速度非常快&#xff0c;新的语法和特性层出不穷。然而&#xff0c;旧版本的浏览器并不总是支持这些新特性。为了确保代码的兼容性和稳定性&#xff0c;我们需要一个工具来将现代 JavaScript 代码转换为旧版本的代码。Babel 就…

vue-element-admin后台集成方案

官网&#xff1a;介绍 | vue-element-adminA magical vue adminhttps://panjiachen.github.io/vue-element-admin-site/zh/guide 1.git环境安装配置及简单操作 1.1git环境安装配置 git软件官网&#xff1a;Git - Downloads (git-scm.com)https://git-scm.com/downloads 下载…

Java | Leetcode Java题解之第145题二叉树的后序遍历

题目&#xff1a; 题解&#xff1a; class Solution {public List<Integer> postorderTraversal(TreeNode root) {List<Integer> res new ArrayList<Integer>();if (root null) {return res;}TreeNode p1 root, p2 null;while (p1 ! null) {p2 p1.left…

JS 中的各种距离 scrollTop?clientHeight?

元素的各种距离 DOM 对象 属性描述offsetWidth只读&#xff0c;返回元素的宽度&#xff08;包括元素宽度、内边距和边框&#xff0c;不包括外边距&#xff09;offsetHeight只读&#xff0c;返回元素的高度&#xff08;包括元素高度、内边距和边框&#xff0c;不包括外边距&am…

【Java】多态、final关键字、抽象类、抽象方法

多态(Polymorphism) 【1】多态跟属性无关&#xff0c;多态指的是方法的多态&#xff0c;而不是属性的多态。 【2】案例代入&#xff1a; public class Animal {//父类&#xff1a;动物&#xff1a; public void shout(){ System.out.println("我是小动物&am…

linux中DNS域名解析服务(后续补充)

分离解析简介&#xff1a; 分离解析的域名服务器实际也是主域名服务器&#xff0c;这里主要是指根据不同的客户端提供不同的域名解析记录。比如来自内网和外网的不同网段地址的客户机请求解析同一域名时&#xff0c;为其提供不同的解析结果。 实验要求&#xff1a;防火墙要么关…