FPGA中复位电路的设计

复位电路也是数字逻辑设计中常用的电路,不管是 FPGA 还是 ASIC 设计,都会涉及到复位,一般 FPGA或者 ASIC 的复位需要我们自己设计复位方案。复位指的是将寄存器恢复到默认值。一般复位功能包括同步复位和异步复位。复位一般由硬件开关触发引起,也可以由复位逻辑控制引起。

复位电路的作用

数字电路中寄存器和 RAM 在上电之后默认的状态和数据是不确定的,如果有复位,就可以把寄存器复位到初始状态 0,RAM 的数据可以通过复位来触发 RAM 初始化到全 0,因为一般逻辑起始都是从 0 开始变化的,这个是根据设计的需要设定的一个值,如果设计需要寄存器上电复位为 1,也是可以的。

还有就是如果逻辑进入了错误的状态,通过复位可以把所有的逻辑状态恢复到初始值。

复位电路的控制方式

1 按键复位

在硬件电路设计中,一般会留下一个复位按键,按下开关复位,就可以简单快捷地进行复位。

但按键复位存在一个问题,就是一般按键在按下时会产生抖动,释放时也会产生抖动。这是因为大多数按键所使用的开关为机械弹性开关,当我们按下或松开按键时,由于弹片的物理特性,不能立即闭合或断开,往往会在断开或闭合的短时间内产生机械抖动。
按键消抖可分为硬件消抖和软件消抖。硬件消抖主要使用RS触发器或电容等方法实现消抖, 一般在按键较少时使用。软件消抖的原理主要为按键按下或松开后延时5ms—20ms采样,这种方法经常使用。
按键去抖的思路是检测到按下时延时 20ms,再检测,如果状态仍为按下,则确认是按下的;如果状态为弹起的,则确认是干扰,无按键按下。
假如rst_in 为一个 普通 按键,直接连接至 FPGA里面的复位引脚作为全局复位,所以按键消抖的原理为:当 rst_in按键按下时可能会出现抖动,需要 等 20ms之后再去检测这个按键是否按下 FPGA里面的这个引脚的电平是否改变 )),这样就达到了按键消抖的目的 。
如下图所示:

检测到第一次按下(检测到低电平),此时延迟20ms,然后 20ms之后,再次检测是否有稳定的低电平 。
由于按键 弹片的物理特性,按键按下时会有抖动,也就是说我们其实只按一次,但是实际产生的“按下”却是许多次的,这些许多次集中在这 20ms里。通过延时 20ms,把其他的“按下(也就是抖动)给滤除了。然后再次判断是否有按下,因为有的时候干扰很大。

2 RC复位电路

这种是一种简单的 RC 复位电路,电源接通时候,通过 R1 对 C2 进行充电,经过一段延迟后加到电路当中产生复位信号,这个复位信号的上升速度低于电源的上电速度,当复位引脚检测到高电平时候,系统复位结束,进入正常工作状态。

3 FPGA上电复位

如果在硬件电路设计时没有留下复位按键,对FPGA来说也没有太大问题,因为 FPGA 内部也会有上电复位的功能,就是 POR(Power On Reset)电路。FPGA 芯片内部有一个上电检测模块,一旦检测到电源电压超过检测门限后,就产生一个上电复位脉冲(Power On Reset)并将其送给所有的寄存器,这个脉冲会自动作用在各个寄存器的复位端,和功能复位管脚共同控制寄存器的复位。
另外,就是 FPGA 重新配置之后,也会触发上电复位。

复位电路的类型

同步复位

同步复位指的是当时钟上升沿检测到复位信号,执行复位操作,有效的时钟沿是前提。实现同步复位通常意味着将复位信号与时钟信号同步。

以下是一个简单的例子,展示了如何使用同步复位来重置一个计数器:

module sync_reset_counter(  
    input wire clk,          // 时钟信号  
    input wire rst,          // 同步复位信号(高电平有效)  
    input wire enable,       // 使能信号  
    input wire inc_dec,      // 增减控制信号(例如,1为增,0为减)  
    output reg [7:0] count   // 计数器输出  
);  
  
always @(posedge clk) begin  
    if (rst) begin  
        // 当rst为高电平时,进行同步复位  
        count <= 8'h00; // 计数器被重置为0  
    end else if (enable) begin  
        // 如果复位信号无效且使能信号有效,则更新计数器  
        if (inc_dec) begin  
            // 如果inc_dec为高,则增加计数器  
            if (count < 8'hFF) // 防止计数器溢出  
                count <= count + 1'b1;  
        end else begin  
            // 如果inc_dec为低,则减少计数器  
            if (count > 8'h00) // 防止计数器下溢  
                count <= count - 1'b1;  
        end  
    end  
end  
  
endmodule

在这个例子中,rst是同步复位信号,它是一个高电平有效的信号。当rst为高时,在下一个clk的上升边沿到来时,计数器count会被重置为0。与异步复位不同,同步复位不会立即发生,而是会在下一个时钟边沿发生时生效。

同步复位的优点如下:

  • 能确保复位信号和时钟信号的相位一致,从而避免由于信号传输延迟而导致的问题;
  • 以同步的方式与其他信号进行控制,减少信号冲突的可能性;
  • 避免由于时序问题(如时钟闪烁、时钟脉冲不稳定等)而导致的系统复位不准确或延迟;
  • 便于仿真;
  • 可以使所设计的系统成为 100%的同步时序电路,有利于时序分析,而且可综合出较高的 Fmax;
  • 由于只在时钟有效电平到来时才有效,所以可以滤除高于时钟频率的复位毛刺,可有效避免因毛刺造成的亚稳态和错误。

同步复位也有一些缺点,缺点如下

  • 复位信号的有效时长必须大于时钟周期,才能真正被系统识别并完成复位任务。由于线路上的延迟,可能需要多个时钟周期的复位脉冲宽度。此外,很难保证复位信号到达各个寄存器的时序,这增加了设计的复杂性。
  • 同步复位是依赖于时钟信号的。如果电路中的时钟信号出现问题,例如时钟停振或者时钟周期不稳定,那么同步复位可能无法完成,导致电路无法正常工作。
  • 由于大多数的逻辑器件的目标库内的 DFF 都只有异步复位端口,所以,倘若采用同步复位的话,综合器就会在寄存器的数据输入端口插入组合逻辑,这样就会一方面额外增加 FPGA 内部的逻辑资源,另一方面也增加了相应的组合逻辑门时延。

异步复位

异步复位指的是无论时钟沿是否到来,只要复位信号有效,就对系统进行复位。实现异步复位电路通常涉及在寄存器或状态机的更新逻辑中包含一个复位信号。

以下是一个简单的例子,展示了如何在Verilog中使用异步复位来重置一个计数器:

module async_reset_counter(  
    input wire clk,          // 时钟信号  
    input wire rst_n,        // 异步复位信号(低电平有效)  
    input wire enable,       // 使能信号  
    input wire inc_dec,      // 增减控制信号(例如,1为增,0为减)  
    output reg [7:0] count   // 计数器输出  
);  
  
always @(posedge clk or negedge rst_n) begin  
    if (!rst_n) begin  
        // 当rst_n为低电平时,进行异步复位  
        count <= 8'h00; // 计数器被重置为0  
    end else if (enable) begin  
        // 如果复位信号无效且使能信号有效,则更新计数器  
        if (inc_dec) begin  
            // 如果inc_dec为高,则增加计数器  
            if (count < 8'hFF) // 防止计数器溢出  
                count <= count + 1'b1;  
        end else begin  
            // 如果inc_dec为低,则减少计数器  
            if (count > 8'h00) // 防止计数器下溢  
                count <= count - 1'b1;  
        end  
    end  
end  
  
endmodule

在这个例子中,rst_n是异步复位信号,它是一个低电平有效的信号。当rst_n为低时,无论时钟信号clk的状态如何,计数器count都会被立即重置为0。当rst_n为高且enable信号也为高时,计数器会根据inc_dec信号的值进行增加或减少。
优点:

  • 大多数目标器件库的 DFF 都有异步复位端口,那么该触发器的复位端口就不需要额外的组合逻辑,这样就可以节省资源;
  • 某些情况下,使用异步复位可以简化逻辑设计。由于复位操作不依赖于时钟信号,因此不需要额外的逻辑来同步复位信号和时钟信号;
  • 可以在任何时间响应复位信号,而不需要等待下一个时钟边沿。这意味着复位操作能够立即发生;
  • 在某些应用中,异步复位可以提高系统的可靠性。例如,在电源上电或复位按钮被按下时,异步复位能够确保系统迅速并可靠地进入已知状态。

异步复位也有一些缺点,缺点如下

  • 最大的问题在于它属于异步逻辑,问题出现在复位释放时,而不是有效时,如果复位释放接近时钟有效沿,则触发器的输出可能进入亚稳态(此时 clk 检测到的 rst_n 的状态就会是一个亚稳态,即是 0 是 1是不确定的),从而导致复位失败。
  • 可能因为噪声或者毛刺造成虚假复位信号(比如系统正常工作时突然复位)(注意:时钟端口、清零和置位端口对毛刺信号十分敏感,任何一点毛刺都可能会使系统出错,因此判断逻辑电路中是否存在冒险以及如何避免冒险是设计人员必须要考虑的问题);
  • 静态定时分析比较困难,静态时序分析一般是针对同步设计的,都是基于时钟周期来分析时序的;
  • 对于 DFT(DesignForTest 可测性设计)设计,如果复位信号不是直接来自于 I/O 引脚,在 DFT 扫描和测试时,复位信号必须被禁止,因此需要额外的同步电路;
  • 在某些情况下,异步复位信号可能会与时钟信号或其他输入信号产生冲突,导致冒险现象(冒险条件)。这可能会导致系统进入不确定的状态,需要进行额外的逻辑设计来避免这种情况。

总结下来,我们推荐使用异步复位、同步释放的方式,并且复位信号为低电平有效。即:
1、复位信号到来的有效与否与 clk 无关,而且复位信号的撤除也与 clk 无关,但是复位信号的撤除是在下一个 clk 来到后才起的作用。
2、异步复位同步撤离的目的为了防止复位信号撤除时,可能产生的亚稳态。

这意味着复位操作是异步的(可以在任何时刻发生),但复位后的撤离(即恢复正常的逻辑操作)是同步的(在时钟边沿发生)。

以下是一个使用这种策略的计数器的Verilog代码示例:
 

module async_reset_sync_release_counter(  
    input wire clk,          // 时钟信号  
    input wire rst_n,        // 异步复位信号(低电平有效)  
    input wire enable,       // 使能信号  
    input wire inc,          // 增加控制信号  
    output reg [7:0] count   // 计数器输出  
);  
  
// 初始化计数器为0,但注意这里不会立即生效,因为Verilog没有真正的初始化语句  
reg [7:0] count_reg = 8'h00; // 使用局部变量进行初始化  
  
always @(posedge clk or negedge rst_n) begin  
    if (!rst_n) begin  
        // 异步复位,任何时候rst_n为低时,计数器立即被置0  
        count_reg <= 8'h00;  
    end else begin  
        // 同步撤离,在rst_n为高且时钟上升边沿到来时,根据enable和inc更新计数器  
        if (enable) begin  
            if (inc) begin  
                if (count_reg < 8'hFF) // 防止计数器溢出  
                    count_reg <= count_reg + 1'b1;  
            end  
        end  
    end  
end  
  
// 同步输出到外部接口  
assign count = count_reg;  
  
endmodule

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/710171.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024海南省大数据教师培训-Hadoop集群部署

前言 本文将详细介绍Hadoop分布式计算框架的来源&#xff0c;架构和应用场景&#xff0c;并附上最详细的集群搭建教程&#xff0c;能更好的帮助各位老师和同学们迅速了解和部署Hadoop框架来进行生产力和学习方面的应用。 一、Hadoop介绍 Hadoop是一个开源的分布式计算框架&…

仿element-ui 实现自己组件库 <3>

目录 input 组件封装 v-model用在组件上 显示和隐藏密码 封装switch组件 实现转换的功能 设置checkbox input 组件封装 首先input组件的基本框架和样式&#xff1a; <div class"miao-input"><input class"miao-input_inner" > </div…

Java | Leetcode Java题解之第151题反转字符串中的单词

题目&#xff1a; 题解&#xff1a; class Solution {public String reverseWords(String s) {StringBuilder sb trimSpaces(s);// 翻转字符串reverse(sb, 0, sb.length() - 1);// 翻转每个单词reverseEachWord(sb);return sb.toString();}public StringBuilder trimSpaces(S…

这份简历让一位程序员在谷歌获得30万美元

大家好&#xff0c;我是弗雷。每次都在让大家尝试走出职场&#xff0c;但今天我们却选择再次走进职场。 作为曾经的职场人&#xff0c;我深深明白简历的敲门砖作用&#xff0c;制作一份优质的简历至关重要。 你所见过的最优秀的简历是什么样子&#xff1f; 或者你想象中最优秀…

全息图分类及相位型全息图制作方法

全息图是一种光学器件&#xff0c;全息图分为振幅型和相位型全息图&#xff0c;振幅型全息图记录光的振幅信息即强度信息&#xff0c;相位型全息图记录光的相位信息&#xff0c;利用相位信息可以恢复光的波前形状&#xff0c;从而记录物体形状&#xff0c;这里主要介绍相位全息…

Java多线程面试重点-2

16.Synchronized关键字加在静态方法和实例方法的区别? 修饰静态方法&#xff0c;是对类进行加锁&#xff08;Class对象&#xff09;&#xff0c;如果该类中有methodA和methodB都是被Synch修饰的静态方法&#xff0c;此时有两个线程T1、T2分别调用methodA()和methodB()&#x…

深度学习与人工智能

深度学习&#xff0c;是一种特殊的人工智能&#xff0c;他与人工智能及机器学习的关系如下&#xff1a; 近些年来&#xff0c;基于人工神经网络的机器学习算法日益盛行起来&#xff0c;逐渐呈现出取代其他机器学习算法的态势&#xff0c;这主要的原因是因为人工神经网络中有一中…

AI 客服定制:LangChain集成订单能力

为了提高AI客服的问题解决能力&#xff0c;我们引入了LangChain自定义能力&#xff0c;并集成了订单能力。这使得AI客服可以根据用户提出的问题&#xff0c;自动调用订单接口&#xff0c;获取订单信息&#xff0c;并结合文本知识库内容进行回答。这种能力的应用&#xff0c;使得…

Android 13 高通设备热点低功耗模式(2)

前言 之前写过一篇文章:高通热点被IOS设备识别为低数据模式,该功能仿照小米的低数据模式写的,散发的热点可以达到被IOS和小米设备识别为低数据模式。但是发现IOS设备如果后台无任何网络请求的时候,息屏的状态下过一会,会自动断开热点的连接。 分析 抓取设备的热点相关的…

如何查找您的 SOLIDWORKS 序列号或许可证密钥

每个 SOLIDWORKS正版的软件都有自己的许可密钥&#xff0c;也称之为SOLIDWOKS的序列号。硕迪科技作为SOLIDKS正版软件代理商&#xff0c;我们的技术团队经常帮助客户查找他们的序列号。这篇文章将向您展示如何查找您的 SOLIDWORKS 序列号。 如果您拥有独立的 SOLIDWORKS 许可&…

碳化硅陶瓷膜良好的性能

碳化硅陶瓷膜是一种高性能的陶瓷材料&#xff0c;以其独特的物理和化学特性&#xff0c;在众多领域展现出了广泛的应用前景。以下是对碳化硅陶瓷膜的详细介绍&#xff1a; 一、基本特性 高强度与高温稳定性&#xff1a;碳化硅陶瓷膜是一种非晶态陶瓷材料&#xff0c;具有极高的…

[Vulnhub]Solid-State POP3邮件服务(James)+rbash逃逸

信息收集&SSH Server IP addressPorts Open192.168.8.100TCP:22,25,80,110,119,4555 Nmap 扫描: $ nmap -p- 192.168.8.100 --min-rate 1000 -sC -sV 结果: Host is up (0.00061s latency). Not shown: 65529 closed tcp ports (conn-refused) PORT STATE SERVICE…

Nacos启动报错

报错日志&#xff1a; Caused by: java.lang.NullPointerException at com.mysql.jdbc.ConnectionImpl.getServerCharset(ConnectionImpl.java:2983) at com.mysql.jdbc.MysqlIO.sendConnectionAttributes(MysqlIO.java:1873) at com.mysql.jdbc.Mysql…

Spring boot 启动报:Do not use @ for indentation

一、使用maven插件动态切换配置时出现报错 二、配置文件及pom 2.1 配置文件结构 2.2 application.yml spring: # 根据环境读取配置文件&#xff08;手动&#xff09; # profiles: # active: dev# 根据环境读取配置文件&#xff08;通过勾选maven插件&#xff09;profiles…

SAP Build 2-PDF数据提取与决策

0. 安装desktop agent 在后续过程中发现要预先安装desktop agent&#xff0c;否则没法运行自动化流程… 0.1 agent下载 参考官方文档说明 https://help.sap.com/docs/build-process-automation/sap-build-process-automation/create-user-in-rbsc-download-repository?loca…

AI 一键换脸,背景替换,ioDraw让图片更有趣

还在为繁琐的图片处理而烦恼吗&#xff1f;快来试试ioDraw的AI图片工具&#xff01; 它集图像识别、图像生成、智能换脸、背景替换、图像融合、肖像风格化、空间风格化、智能扩图、智能抠图、画质提升、美颜、拉伸修复、透视校正等功能于一身&#xff0c;为你提供前所未有的图…

网络攻击第二节考题有问题的

这个选ab&#xff0c;不懂a是啥这俩是啥 DHCP欺骗-教程详解-CSDN博客 OSI七层网络攻击行为及防范手段_物理层的攻击方式-CSDN博客 这选项讲了吗 选abc 假消息攻击-CSDN博客 啥是ips防护 12题选adcd 为啥连接别人的wifi会被dns欺骗&#xff1f;&#xff1f; 连接的那个wifi…

appproxy 一个轻量级的VPN代理工具,支持HTTP, SOCKS5协议

appproxy 项目背景 在分析app的时候,偶尔需要抓包,尝试了目前比较常见的代理工具Drony Postern ProxyDroid 发现都有一个相同的问题,对于较新的Android系统不太友好,要么app列表显示不正常,或者界面过于复杂,往往设置之后经常会失效,偶然在play上发现一个比较新的代理工具,界…

I/O Stream设计实验

实验要求和目的 深入理解java输入输出流相关类的基本用法&#xff0c;并且可以掌握Java程序的编写和调试。 实验环境 Java语言&#xff0c;PC或android平台 实验具体内容 设计和编写以下程序&#xff1a; 程序1&#xff1a; 从键盘读入多行字符串&#xff08;英文&#xf…

终于把AUC的计算方式搞懂了!

1. 横纵坐标 纵坐标&#xff1a;sensitivity或者TPR 横坐标&#xff1a;FPR 或者 1-Specificity 2. 计算方法 2.1 方法1 def get_roc_auc(y_true, y_score):"""正样本得分大于负样本得分的概率&#xff0c;需要遍历每个正样本和每个负样本1. 选取所有正样本与…