2024海南省大数据教师培训-Hadoop集群部署

前言

       本文将详细介绍Hadoop分布式计算框架的来源,架构和应用场景,并附上最详细的集群搭建教程,能更好的帮助各位老师和同学们迅速了解和部署Hadoop框架来进行生产力和学习方面的应用。


一、Hadoop介绍

       Hadoop是一个开源的分布式计算框架,由Apache软件基金会维护,专为处理和存储大规模数据集(大数据)而设计。它最初由Doug Cutting和Mike Cafarella开发,灵感来源于Google的两篇论文:《Google File System》和《MapReduce: Simplified Data Processing on Large Clusters》。Hadoop的核心优势在于其高度可扩展性、容错性和成本效益,使得它成为大数据处理领域的基石。

下面详细解析Hadoop的各个方面:


1. Hadoop分布式文件系统(HDFS)

       HDFS是Hadoop的核心组件之一,它是一个高度容错性的分布式文件系统,旨在运行在低成本的硬件设备上。HDFS的设计理念是“一次写入,多次读取”,特别适合大规模数据集的存储。

  • 架构:HDFS采用主/从(Master/Slave)架构,其中NameNode作为主节点管理文件系统的元数据(文件名、文件位置等),而DataNodes作为从节点负责实际存储数据块。每个文件会被分割成固定大小的块(默认64MB),并复制到多个DataNode上,通常复制因子为3,以确保数据的高可用性和容错性。
  • 数据复制策略:第一个副本放置在客户端所在节点或随机节点,第二个副本放置在不同机架的节点上,第三个副本则位于与第二个副本相同机架的另一个节点上,以此来优化数据访问速度和容错能力。

2. MapReduce核心分布式计算模型

        MapReduce是Hadoop中最核心的分布式计算模型,它是一种编程范式,允许开发者在分布式系统上处理和生成大数据集。MapReduce的概念最早由Google提出,并在Apache Hadoop项目中得到实现和广泛应用。以下是关于MapReduce的详细解释:

基本概念

        MapReduce的核心思想是将复杂的计算任务分解为两个主要阶段:Map(映射)和Reduce(归约)。这两个阶段分别对应两个用户自定义的函数:map()reduce()

  • Map阶段:此阶段负责接收输入数据集并对数据进行初步处理。它将输入数据切分成多个小块(Splits),每个Split由一个Map任务处理。Map任务对每条记录执行用户定义的map()函数,产生一系列的中间键值对(Intermediate Key-Value Pairs)。

  • Shuffle & Sort阶段:在Map和Reduce阶段之间,有一个重要的步骤称为Shuffle(洗牌)和Sort(排序)。在这个阶段,Map任务产生的中间键值对会被按照键进行排序、分区,并且可能需要在网络上传输到相应的Reduce任务节点。

  • Reduce阶段:Reduce任务负责接收来自各个Map任务的特定键的所有值,对它们进行聚集操作(例如求和、平均、最大值等)。用户定义的reduce()函数会对相同键的所有值进行迭代处理,生成最终的输出键值对。

关键特性

  • 并行处理:Map和Reduce任务可以在Hadoop集群中的多个节点上并行执行,大大加快了数据处理的速度。
  • 容错性:Hadoop MapReduce框架自动处理任务失败的情况,通过重新执行失败的任务来保证计算的完整性。
  • 扩展性:可以通过向集群添加更多的节点来线性地扩展计算能力,处理更大的数据集。
  • 资源管理:在Hadoop 2.x及之后的版本中,YARN(Yet Another Resource Negotiator)负责集群资源的管理和调度,使得MapReduce作业能够更高效地与其他计算框架共享资源。

使用场景

       MapReduce适用于处理大规模离线数据,如日志分析、网页索引构建、数据统计分析等场景。它尤其适合那些可以被分解为大量独立操作的任务,但对实时性要求不高的情况。

缺点与限制

     尽管MapReduce非常强大,但它也有一定的局限性:

  • 延迟较高:由于数据处理流程涉及多次磁盘I/O和网络传输,MapReduce不适合低延迟或实时处理需求。
  • 编程模型限制:所有的计算都必须能够表达为Map和Reduce操作,这在处理某些复杂计算逻辑时可能会显得笨拙。
  • 资源消耗:在处理大量小文件时,MapReduce可能会因为启动大量任务而导致较高的资源开销。

3. YARN(Yet Another Resource Negotiator)

       YARN(Yet Another Resource Negotiator)是Apache Hadoop项目中的一个关键组件,它作为从Hadoop 2.x版本开始引入的资源管理系统,彻底改变了Hadoop的工作方式,特别是对于如何管理集群资源以及运行各种类型的应用程序。YARN的设计目标是为了提高Hadoop的灵活性和通用性,使其不仅仅局限于批处理作业,还能支持流处理、交互式查询、机器学习等多种计算框架。

核心架构

       YARN架构分为几个关键组件,这些组件协同工作,提供了动态、可伸缩的资源管理能力:

  1. ResourceManager (RM): 负责整个集群的资源管理和分配。它是集群的中心管理者,接收来自各个应用的资源请求,并基于容量调度器(Capacity Scheduler)或公平调度器(Fair Scheduler)策略决定如何分配资源给各个应用程序。

  2. NodeManager (NM): 部署在每个节点上,负责容器管理与监控,以及向ResourceManager报告本节点的资源使用情况和健康状况。容器是YARN中资源抽象的基本单位,包括CPU、内存等。

  3. ApplicationMaster (AM): 每个应用程序在运行时会启动一个ApplicationMaster实例,负责向ResourceManager协商资源,并与NodeManager通信来启动和监控该应用的具体任务(比如MapReduce任务、Spark executor等)。ApplicationMaster是特定于应用程序的,了解如何运行和管理该类型的应用。

  4. Client: 提交应用程序到ResourceManager的客户端。它还负责监控应用程序的状态,并在应用程序完成后获取其输出。

工作流程

  1. 应用提交:客户端向ResourceManager提交应用的资源请求。
  2. 资源分配:ResourceManager为应用分配一个ApplicationMaster,并在某个NodeManager上启动它。
  3. 任务调度:ApplicationMaster进一步向ResourceManager请求具体任务所需的资源,ResourceManager根据当前集群资源状况分配容器。
  4. 任务执行:ApplicationMaster与对应的NodeManager通信,指示其在分配的容器中启动任务。
  5. 监控与状态更新:ApplicationMaster监控所有任务的执行进度,并向ResourceManager报告应用状态。同时,NodeManager也定期向ResourceManager发送心跳,报告容器状态。
  6. 应用完成:当所有任务执行完毕,ApplicationMaster通知ResourceManager,然后关闭自己并释放资源。

优势

  • 灵活性:YARN允许多种计算框架共存于同一集群中,不再局限于MapReduce。
  • 高效资源利用:通过细粒度的资源分配和动态调整,提高了集群资源的利用率。
  • 可扩展性:设计上支持大规模集群,容易横向扩展以处理更多数据和运行更多应用程序。
  • 故障恢复:提供快速故障检测和恢复机制,确保应用程序的高可用性。

YARN的引入,使得Hadoop生态系统更加健壮,为大数据处理提供了更强大的支撑平台。 

4. Hadoop生态系统

       Hadoop生态系统是一个围绕Apache Hadoop核心组件(主要包括HDFS、MapReduce和YARN)构建起来的庞大而多样化的工具和框架集合,旨在解决大数据处理、存储、分析、管理和访问的各种需求。以下是一些关键组件和工具的概述:

核心组件

  1. HDFS (Hadoop Distributed File System): 一个高度容错性的分布式文件系统,设计用于运行在商用硬件上。它将大文件分割成块并存储在不同的节点上,同时保持多个副本以确保数据的可靠性和高可用性。

  2. MapReduce: 一个分布式计算框架,允许在大量计算节点上并行处理大规模数据集。它将数据处理任务分为两个阶段:Map(映射)和Reduce(归约),非常适合批处理任务。

  3. YARN (Yet Another Resource Negotiator): Hadoop 2.x版本引入的资源管理器,它分离了资源管理与任务调度/监控,使Hadoop能够支持多种计算框架,而不仅仅是MapReduce。

重要工具和框架

  1. Hive: 提供了一种类似SQL的查询语言(HQL),允许用户对存储在Hadoop中的数据进行查询和分析,适合大数据仓库应用。

  2. Pig: 是一种数据流语言,设计用于处理大规模数据集,通过其Pig Latin脚本语言,用户可以编写复杂的数据转换和分析任务。

  3. HBase: 是一个分布式、列式存储的NoSQL数据库,建立在HDFS之上,适合随机读写访问和实时查询。

  4. ZooKeeper: 一个分布式的、开放源码的协调服务,提供配置管理、命名服务、分布式同步和组服务等功能,常作为其他组件的依赖。

  5. Spark: 虽然不是Hadoop直接的组成部分,但常与Hadoop生态系统集成使用,提供了一个更快、更通用的数据处理框架,支持批处理、交互式查询、流处理和机器学习等多种计算模型。

  6. Flume: 一个高可用、高可靠的系统用于收集、聚合和移动大量日志数据到HDFS或其他存储系统中。

  7. Sqoop: 用于在Hadoop和关系型数据库之间高效传输数据,支持批量导入导出操作。

  8. Oozie: 一个工作流调度系统,用于管理Hadoop作业的执行顺序,支持定时执行、依赖管理和错误处理。

  9. Kafka: 虽然是一个独立的项目,但在Hadoop生态系统中常用于构建实时数据管道,作为高吞吐量的分布式消息系统。

  10. Ambari: 一个用于管理和监控Hadoop集群的工具,提供了Web UI用于配置、管理和监控Hadoop生态系统中的各种服务。

5. 应用场景

        Hadoop作为一个强大的大数据处理平台,其应用场景广泛且多样,涵盖了众多行业和领域。以下是一些典型的Hadoop应用场景:

(1). 在线旅游和电子商务

  • 全球众多在线旅游网站(如Expedia)利用Hadoop处理和分析用户行为数据,优化搜索排名,个性化推荐旅行套餐,以及进行市场趋势分析。
  • 电商平台(如eBay)使用Hadoop处理海量交易数据,进行用户行为分析、库存管理、价格优化以及销售预测。

(2). 移动数据分析

  • Hadoop用于处理和分析来自智能手机的大量数据,包括用户行为、应用使用情况、位置服务等,帮助电信运营商优化网络性能、设计定制化服务和广告投放策略。

(3). 金融服务

  • 金融机构运用Hadoop处理交易数据,进行风险评估、欺诈检测、信用评分以及市场趋势分析。
  • 银行和保险公司使用Hadoop进行大规模数据的ETL(抽取、转换、加载)处理,构建数据仓库和数据湖。

(4). 社交媒体和内容平台

  • 社交媒体公司利用Hadoop分析用户生成的内容、情感分析、趋势预测以及进行推荐系统的优化。
  • 视频和内容分享平台使用Hadoop处理视频转码、内容分类和用户行为分析,以提升用户体验。

(5). 能源与公共事业

  • 能源公司(如Chevron)利用Hadoop进行地质数据的分析,辅助油气勘探和开采决策。
  • 公用事业公司(如Opower)使用Hadoop分析用户电表数据,提供节能建议和预测性维护服务。

(6). 医疗健康

  • 医疗机构和研究机构利用Hadoop处理和分析电子病历、基因组数据,支持疾病研究、药物开发和个性化医疗。

(7). 广告技术和市场营销

  • 广告公司利用Hadoop分析用户浏览习惯、点击流数据,进行精准营销和广告效果评估。

(8). 政府和公共部门

  • 政府机构使用Hadoop整合和分析跨部门数据,进行人口统计分析、城市规划、公共安全监测等。

(9). 物联网(IoT)和传感器数据

  • Hadoop处理来自智能设备和传感器的大量数据,用于预测性维护、能耗管理、环境监测等。

(10). 科研和学术

  • 在科学研究中,Hadoop帮助处理天文观测、气候模拟、粒子碰撞实验等产生的庞大数据集,加速科学发现。

       这些应用场景展示了Hadoop在处理大数据挑战方面的灵活性和强大能力,无论是数据存储、处理还是分析,Hadoop都能提供强大的支持。随着技术的进步和行业需求的增长,Hadoop的应用范围预计还会继续扩大。

6. 优缺点

优点

  • 高扩展性:容易横向扩展,支持处理PB级数据。
  • 容错性强:通过数据复制和故障恢复机制保证数据安全。
  • 成本效益:可在低成本硬件上运行,减少投入成本。
  • 易于编程:MapReduce模型简化了分布式编程。

缺点

  • 低延迟问题:Hadoop更擅长批处理,对于实时或低延迟要求的处理不够理想。
  • 小文件问题:处理大量小文件时效率较低。
  • 复杂性:维护和管理一个Hadoop集群可能需要专门的技术团队。

      Hadoop通过其强大的数据存储和处理能力,成为了大数据时代的重要基础设施,不断推动着数据驱动的决策制定和业务创新。


社区版和商业版

       Hadoop 发行版本分为开源 社区版 商业版 。 社区版是指由 Apache 软件基金会维护的版本,是官方维护的版本体系。

社区版

Apache Hadoopicon-default.png?t=N7T8https://hadoop.apache.org/

商业版

        商业版Hadoop是指由第三方商业公司在社区版Hadoop基础上进行了一些修
改、整合以及各个服务组件兼容性测试而发行的版本,比较著名的有 cloudera
的 CDH 、mapR、hortonWorks 等
Open Source & Open Standards | Clouderaicon-default.png?t=N7T8https://www.cloudera.com/open-source.html

分支发展

       Hadoop 的版本很特殊,是由多条分支并行的发展着。大的来看分为 3 个大 的系列版本:1.x、2.x、3.x。

       Hadoop1.0 由一个分布式文件系统 HDFS 和一个离线计算框架 MapReduce 组
成。架构落后,已经淘汰。
       Hadoop 2.0 则包含一个分布式文件系统 HDFS,一个资源管理系统 YARN 和一
个离线计算框架 MapReduce。相比于 Hadoop1.0,Hadoop 2.0 功能更加强大,且
具有更好的扩展性、性能,并支持多种计算框架。

       Hadoop 3.0 相比之前的 Hadoop 2.0 有一系列的功能增强。目前已经趋于稳

定,可能生态圈的某些组件还没有升级、整合完善。
本次教学使用的是 Apache Hadoop 3.3.0

Hadoop 集群搭建

       搭建教程中使用到的所有文件和工具都可以在我的资源中下载到。

1、集群简介

      HADOOP 集群具体来说包含两个集群:HDFS 集群和 YARN 集群,两者逻辑上分 离,但物理上常在一起。
      HDFS 集群负责海量数据的存储,集群中的角色主要有:
NameNode
DataNode
SecondaryNameNode
     YARN 集群负责海量数据运算时的资源调度,集群中的角色主要有:
ResourceManager
NodeManager
        mapreduce 是一个分布式运算编程框架,是应用程序开 发包,由用户按照编程规范进行程序开发,后打包运行在 HDFS 集群上,并且受 到 YARN 集群的资源调度管理。
Hadoop 部署方式分三种:
Standalone mode(独立模式)
Pseudo-Distributed mode(伪分布式模式)
Cluster mode(群集模式)
其中前两种都是在单机部署。
        独立模式又称为单机模式,仅 1 个机器运行 1 个 java 进程,主要用于调试。 伪分布模式也是在 1 个机器上运行 HDFS 的 NameNode 和 DataNode、YARN 的 ResourceManger 和 NodeManager,但分别启动单独的 java 进程,主要用于调试。 集群模式主要用于生产环境部署。会使用 N 台主机组成一个 Hadoop 集群。 这种部署模式下,主节点和从节点会分开部署在不同的机器上。

2、搭建角色分配

      以3 节点为例进行搭建,角色分配如下:
node1   NameNode          DataNode               ResourceManager
node2    DataNode         NodeManager         SecondaryNameNode
node3    DataNode         NodeManager

3、网络环境配置

      检查你的VMware网络配置,NAT的网段是多少,我的是172.16.10.0/24
     node1、node2、node3均为CentOS7服务器,将他们划入NAT虚拟网络中,并且给他们配置固定IP。DNS按照最初NAT模式分配的来设置,我的是172.16.10.2
node 1  inet 172.16.10.129  netmask 255.255.255.0  broadcast 172.16.10.255  
node 2  inet 172.16.10.130  netmask 255.255.255.0  broadcast 172.16.10.255
node 3  inet 172.16.10.131  netmask 255.255.255.0  broadcast 172.16.10.255
 图形化设置:
应用后重启网卡即可。(关闭一下再打开)
物理机能通就表示配置完成。
node2和node3同理。
命令行配置:
可参考下面的博文,这里不过多讲解。 CentOS 7 的网络配置及部分基础操作命令_centos7网络配置-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/lvhezhong123/article/details/111597641

(2)、修改各个虚拟机主机名

       Linux中修改配置文件会频繁使用到vim这个工具,如果不会使用的可以点击下面的链接跳转到vim工具的认识和基础使用。Linux中vim编辑器的使用方法及命令详解_使用vim工具编写程序并显示行号,保存为文件txt-CSDN博客文章浏览阅读1.4w次,点赞14次,收藏63次。文章目录Vim编辑器的使用Vi简述vim的三种模式概述转换方式文本编辑1. 命令行模式功能键2.底行模式功能键上机任务:vi编辑器Vim编辑器的使用Vi简述Linux 提供了一系列功能强大的编辑器,如 vi 和 Emacs 。 vi 是 linux 系统的第一个全屏幕交互式编辑器。vim是vi的强化版本,完全兼容vi操作。vim的一般使用方法:# vim filepath //如..._使用vim工具编写程序并显示行号,保存为文件txthttps://blog.csdn.net/Sevel7/article/details/105189768

vi /etc/hostname
node1

这样就修改完了,注销或重启后主机名就会改变为node1。
reboot #重启 

node 2 node 3 执行相同操作。

(3)、修改主机名和 IP 的映射关系

        修改node1、node2、node3的hosts文件,添加以下几项映射关系。

vi /etc/hosts

172.16.10.129 node1
172.16.10.130 node2
172.16.10.131 node3

node1

node2
node3
修改完后重启网络即可生效。
/etc/init.d/network restart

测试:

node1:

node2:

node3:

测试映射关系没问题,进行下一步。

(4)、关闭防火墙

#查看防火墙状态
systemctl status firewalld.service
#关闭防火墙
systemctl stop firewalld.service
#关闭防火墙开机启动
systemctl disable firewalld.service

node1、node2、node3都要关闭防火墙。

node1:

node2:
node3:

(5)、配置 ssh 免登陆

      ( 配置 node1-->node1,node2,node3)=node1免密登录node1、node2、node3(没错,自己要给自己也免密),node1 生成 ssh 免登陆密钥
ssh-keygen -t rsa (一直回车)
执行完这个命令后,会生成两个文件 id_rsa(私钥)、id_rsa.pub(公钥)

将公钥拷贝到要免密登陆的目标机器上
ssh-copy-id node1
ssh-copy-id node2
ssh-copy-id node3

拷贝过程中首先会出现要求你输入yes确认,然后输入拷贝目标主机的ssh密码,输入完成后回车即可

测试:

      这里进入node2后又退出的原因是因为我们只做了node1免密node2和node3,而node2、3并没有免密node1和相互免密!!!

      为了后面少出bug,我这里直接给node1、2、3全部配置上免密登录ssh。方法同上操作,一定要给自己也配置免密!!

从这里我将使用xshell7工具连接node1、2、3来操作。

(6)、同步集群时间

yum install ntpdate
ntpdate cn.pool.ntp.org

       集群无法部署成功,很大一部分是集群的系统时间不同,因为同步集群时间不只这两行代码能完成,所以这里给出一个跳转链接,需要同步集群时间操作的可以去看看。CentOS-7的集群时间同步(ntp方式)_centos cluster ntp-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zhangbeizhen18/article/details/107602525

查看系统时间:
CentOS 7 查看系统时间、更新系统时间 、修改系统时间_cento系统时间-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_37779570/article/details/81979263
date

      因为多台服务器,你没必要i同时三台输入命令,查看系统时间,所以一般对上分钟就没多大问题。

node1:

node2:
node3:
集群时间同步,测试通过,进行下一步。

4、JDK 环境安装

卸载虚拟机自带的 JDK

注意:如果你的虚拟机是最小化安装不需要执行这一步。
[root@hadoop100 ~]# rpm -qa | grep -i java | xargs -n1 rpm -e --nodeps
rpm -qa :查询所安装的所有 rpm 软件包
  grep -i :忽略大小写
xargs -n1 :表示每次只传递一个参数
rpm -e –nodeps :强制卸载软件
node1、2、3全部都要删除自带java

上传 jdk

jdk-8u241-linux-x64.tar.gz   #资源在我主页资源中自行查找
      连接xftp或者cd进入root目录下,直接拖拽文件进入xshell的命令行,也可以实现上传。上传jdk,注意上传的路径!这里建议跟我上传的路径一致,方便后续操作。上传到/root目录下。

创建目录

Linux常用命令:

Linux mkdir命令教程:如何创建目录(附实例详解和注意事项)_创建目录,mkdir.未定义标识符要怎么办?-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/u012964600/article/details/136169415node1、2、3都要创建。

Mkdir -p /export/server

解压 jdk

解压刚刚上传的jdk到刚创建的目录。(node1、2、3)
tar -zxvf jdk-8u241-linux-x64.tar.gz -C /export/server

将 java 添加到环境变量中

先在node1配置,配置完成后使用scp命令同步到node2和node3即可。

vim /etc/profile.d/my_env.sh

#在文件最后添加
export JAVA_HOME=/export/server/jdk1.8.0_241
export PATH=$PATH:$JAVA_HOME/bin
export
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
#刷新配置(会跟随profile.d文件同步刷新)
source /etc/profile

测试java环境变量
java -version

       没问题。继续手动配置node2和node3.

Java环境配置完成。

5、Hadoop 重新编译

       Hadoop 官方一般都给出了对应版本安装包,一般情况下是不需要自己进行编译的,但是由于官方编译好的 hadoop 的安装包没有提供带 C 程序访问的接口, 所以在使用本地库(本地库可以用来做压缩,以及支持 C 程序等等 )的时候就会 出问题,因此生产环境中,一般会重新编译。
        此外,作为开源软件,针对源码进行修改某些属性,之后也需要重编译。 可以使用课程提供编译好的安装包。

6、Hadoop 安装包目录结构

       解压 hadoop-3.3.0-Centos7-64-with-snappy.tar.gz,目录结构如下:
bin Hadoop 最基本的管理脚本和使用脚本的目录 ,这些脚本是 sbin 目录 下管理脚本的基           础实现,用户可以直接使用这些脚本管理和使用 Hadoop。
etc Hadoop 配置文件所在的目录 ,包括 core-site,xml、hdfs-site.xml、 mapred-site.xml               等从 Hadoop1.0 继承而来的配置文件和 yarn-site.xml 等
       Hadoop2.0 新增的配置文件。
include :对外提供的编程库头文件(具体动态库和静态库在 lib 目录中), 这些头文件均是                  用 C++定义的,通常用于 C++程序访问 HDFS 或者编写 MapReduce 程序。
lib :该目录包含了 Hadoop 对外提供的编程动态库和静态库,与 include 目录中的头文件结           合使用。
libexec :各个服务对用的 shell 配置文件所在的目录,可用于配置日志输 出、启动参数(比                  如 JVM 参数)等基本信息。
sbin Hadoop 管理脚本所在的目录 ,主要包含 HDFS 和 YARN 中各类服务的 启动/关闭脚             本
share Hadoop 各个模块编译后的 jar 包所在的目录,官方自带示例

7、解压Hadoop3.3.0

将Hadoop上传到/exprot/server路径下,在此路径解压。

tar -zxvf hadoop-3.3.0-Centos7-64-with-snappy.tar.gz 

删除安装包。

给Hadoop-3.3.0目录赋予权限

chmod -R 777 hadoop-3.3.0/

8、Hadoop 配置文件修改

       Hadoop 安装主要就是配置文件的修改,一般在主节点进行修改,完毕后 scp 下发给其他各个从节点机器

(1)、hadoop-env.sh

所在目录:/export/server/hadoop-3.3.0/etc/hadoop

       文件中设置的是 Hadoop 运行时需要的环境变量。JAVA_HOME 是必须设置的, 即使我们当前的系统中设置了 JAVA_HOME,它也是不认识的,因为 Hadoop 即使 是在本机上执行,它也是把当前的执行环境当成远程服务器。
export JAVA_HOME=/export/server/jdk1.8.0_241
#文件最后添加
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

编辑hadoop-env.sh文件,修改并添加上述参数。

vim hadoop-env.sh

修改完成,保存退出。
:wq  #保存退出

(2)、core-site.xml

所在目录:/export/server/hadoop-3.3.0/etc/hadoop

      hadoop 的核心配置文件,有默认的配置项 core-default.xml。 core-default.xml 与 core-site.xml 的 功 能 是 一 样 的 , 如 果 在 core-site.xml 里没有配置的属性,则会自动会获取 core-default.xml 里的相 同属性的值。
      编辑core-site.xml文件,将以下代码放入<configuration> </configuration>中,具体看例图:
vim core-site.xml
<property>
<name>fs.defaultFS</name>
<value>hdfs://node1:8020</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/export/data/hadoop-3.3.0</value>
</property>
<!-- 设置 HDFS web UI 用户身份 -->
<property>
<name>hadoop.http.staticuser.user</name>
<value>root</value>
</property>
<!-- 整合 hive -->
<property>
<name>hadoop.proxyuser.root.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.root.groups</name>
<value>*</value>
</property>
      这里的8020默认为数据接口,后续大数据接入需要用到。修改完成,保存退出。
:wq  #保存退出

(3)、hdfs-site.xml

所在目录:/export/server/hadoop-3.3.0/etc/hadoop

      HDFS 的核心配置文件,有默认的配置项 hdfs-default.xml。hdfs-default.xml 与 hdfs-site.xml 的功能是一样的 , 如果在 hdfs-site.xml 里没有配置的属性,则会自动会获取 hdfs-default.xml 里的相 同属性的值。
      编辑 hdfs-site.xml文件,将以下代码放入<configuration> </configuration>中,具体看例图:
vim hdfs-site.xml
<!-- 指定 secondarynamenode 运行位置 -->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>node2:50090</value>
</property>

:wq  #保存退出

(4)、mapred-site.xml

所在目录:/export/server/hadoop-3.3.0/etc/hadoop

       MapReduce 的核心配置文件,有默认的配置项 mapred-default.xml。 mapred-default.xml与mapred-site.xml的功能是一样的 ,如果在mapred-site.xml里没有配置的属性,则会自动会获取 mapred-default.xml里的相同属性的值。
       编辑 mapred-site.xml文件,将以下代码放入<configuration> </configuration>中,具体看例图:
vim mapred-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
</property>

(5)、yarn-site.xml

所在目录:/export/server/hadoop-3.3.0/etc/hadoop

       YARN 的核心配置文件,有默认的配置项 yarn-default.xml。 yarn-default.xml与yarn-site.xml的功能是一样的 ,如 果 在 yarn-site.xml 里没有配置的属性,则会自动会获取yarn-default.xml里相同属性的值。
        编辑 yarn-site.xml文件,将以下代码放入<configuration> </configuration>中,具体看例图:
vim yarn-site.xml
<!-- 指定 YARN 的主角色(ResourceManager)的地址 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>node1</value>
</property>
<!-- NodeManager 上运行的附属服务。需配置成 mapreduce_shuffle,才可运行 MapReduce
程序默认值:"" -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 是否将对容器实施物理内存限制 -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!-- 是否将对容器实施虚拟内存限制。 -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!-- 开启日志聚集 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 设置 yarn 历史服务器地址 -->
<property>
<name>yarn.log.server.url</name>
<value>http://node1:19888/jobhistory/logs</value>
</property>
<!-- 保存的时间 7 天 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
:wq  #保存退出

(6)、workers

所在目录:/export/server/hadoop-3.3.0/etc/hadoop

        workers 文件里面记录的是集群主机名。主要作用是配合一键启动脚本如 start-dfs.sh、stop-yarn.sh 用来进行集群启动。这时候workers文件里面的主机标记的就是从节点角色所在的机器。
       编辑 workers文件,将以下代码放入,具体看例图:
vim workers 
node1
node2
node3
:wq  #保存退出

9. scp 同步安装包

cd /export/server
scp -r hadoop-3.3.0 root@node2:$PWD
scp -r hadoop-3.3.0 root@node3:$PWD
       在 node1 上进行了配置文件的修改,使用 scp 命令将修改好之后的安装包同 步给集群中的其他节点。

10Hadoop 环境变量

3 台机器都需要配置环境变量文件。
vim /etc/profile.d/my_env.sh
export HADOOP_HOME=/export/server/hadoop-3.3.0
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

source /etc/profile
这里记得同步手动修改node2和node3的环境变量配置:
        Hadoop环境变量配置完成。

Hadoop 集群启动

初始-格式化

         要启动 Hadoop 集群,需要启动 HDFS 和 YARN 两个集群。 注意: 首次启动 HDFS 时,必须对其进行格式化操作 。本质上是一些清理和 准备工作,因为此时的 HDFS 在物理上还是不存在的。必须进行初始的格式化操作!!(node1、node2、node3全部都要格式化!!)
hadoop namenode -format

node1:

成功。
node2:
成功。
node3:
成功。
怎么查看成功?往上翻,看见这个就可以算作是初始化成功了。
现在开始启动

单节点逐个启动

主节点(node1)、从节点(node2、node3)

在主节点上使用以下命令启动 HDFS NameNode:(node1)
     $HADOOP_HOME/bin/ hdfs --daemon start namenode
在每个从节点上使用以下命令启动 HDFS DataNode:(node 1 、2、3)
     $HADOOP_HOME/bin/hdfs --daemon start datanode
在 node2 上使用以下命令启动 HDFS SecondaryNameNode:
     $HADOOP_HOME/bin/hdfs --daemon start secondarynamenode
在主节点上使用以下命令启动 YARN ResourceManager:(node1)
     $HADOOP_HOME/bin/ yarn --daemon start resourcemanager
在每个从节点上使用以下命令启动 YARN nodemanager:(node 1 、2、3)
     $HADOOP_HOME/bin/yarn --daemon start nodemanager
如果想要停止某个节点上某个角色,只需要把命令中的 start 改为 stop 即可。

脚本一键启动-(建议选择单节点逐个启动,两种方式任选一种即可)

       如果配置了 etc/hadoop/workers 和 ssh 免密登录,则可以使用程序脚本启 动所有 Hadoop 两个集群的相关进程,在主节点所设定的机器上执行。
hdfs:$HADOOP_PREFIX/sbin/start-dfs.sh
yarn: $HADOOP_PREFIX/sbin/start-yarn.sh
停止集群:stop-dfs.sh、stop-yarn.sh

集群 web-ui

一旦 Hadoop 集群启动并运行,可以通过 web-ui 进行集群查看,如下所述:

NameNode

http://172.16.10.129:port/ 默认 9870
可以看到有三个节点在线。

ResourceManager

http://172.16.10.129:port/ 默认 8088
这边也可以看到三个活动节点。

Hadoop 体验

HDFS 使用

从 Linux 本地上传一个文本文件到 hdfs 的/test/input 目录下
hadoop fs -mkdir -p /test/input     #创建一个目录
hadoop fs -put /root/somewords.txt /test/input   #上传文件到这个目录

你可能会碰到的报错:

       遇到这个错误提示“put: /test/input': No such file or directory:        hdfs://node1:8020/test/input'”时,意味着你在尝试使用Hadoop的hadoop fs -put命令上传文件到HDFS时,指定的目标目录不存在。Hadoop要求上传文件的目标路径必须是已存在的。这个问题可以通过以下几个步骤解决:

  1. 创建缺失的目录: 在上传文件之前,首先确保目标目录已经存在。你可以使用hadoop fs -mkdir命令来创建所需的目录。例如,如果想要上传到/test/input目录,先创建这个目录:

    Bash
    hadoop fs -mkdir -p /test/input

    -p选项表示如果父目录不存在,也会一并创建。

  2. 再次尝试上传: 一旦目标目录创建成功,就可以重新尝试使用put命令上传文件了。例如,如果你要上传本地的localfile.txt到HDFS的/test/input目录下,命令如下

    Bash
    hadoop fs -put localfile.txt /test/input/

    注意路径末尾的斜杠是可选的,但加上它可以明确表示这是一个目录。

  3. 检查权限: 如果问题仍然存在,可能是因为权限问题。确保你有权限在HDFS上创建目录和上传文件。这通常涉及到HDFS的权限设置,可以通过Hadoop的ACL(Access Control List)或者HDFS的配置来管理。

  4. 检查Hadoop集群状态: 确保Hadoop集群运行正常,尤其是NameNode(在你的例子中是node1:8020)是活动且可访问的。可以通过检查集群的日志文件或使用Hadoop的管理工具(如Ambari、Cloudera Manager等)来验证。

上传成功。

运行 mapreduce 程序

       在 Hadoop 安装包的 share/hadoop/mapreduce 下有官方自带的 mapreduce 程 序。我们可以使用如下的命令进行运行测试。
示例程序 jar:
hadoop-mapreduce-examples-3.3.0.jar
计算圆周率:
hadoop jar hadoop-mapreduce-examples-3.3.0.jar pi 20 50
关于圆周率的估算,感兴趣的可以查询资料 Monte Carlo 方法来计算 Pi 值。
计算 wordcount:
hello hello tom hello allen hello
allen tom mac apple
hello apple spark allen tom
hadoop-mapreduce-examples-3.3.0.jar wordcount /wordcount/input /wordcount/output

MapReduce jobHistory

       JobHistory 用来记录已经 finished 的 mapreduce 运行日志,日志信息存放 于 HDFS 目录中,默认情况下没有开启此功能,需要在 mapred-site.xml 中配置并手动启动。

1. 修改 mapred-site.xml

cd /export/servers/hadoop-3.3.0/etc/hadoop
vim mapred-site.xml
MR JobHistory Server 管理的日志的存放位置
<property>
<name>mapreduce.jobhistory.address</name>
<value>node1:10020</value>
</property>
查看历史服务器已经运行完的 Mapreduce 作业记录的 web 地址,需要启动该
服务才行
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>node1:19888</value>
</property>

2. 分发配置到其他机器

cd /export/servers/hadoop-3.3.0/etc/hadoop
scp -r mapred-site.xml node2:$PWD
scp –r mapred-site.xml node3:$PWD

3. 启动 jobHistoryServer 服务进程

mapred --daemon start historyserver
如果关闭的话 用下述命令
mapred --daemon stop historyserver

4. 页面访问 jobhistoryserver

http://node1:19888/jobhistory

HDFS 的垃圾桶机制

1. 垃圾桶机制解析

         每一个文件系统都会有垃圾桶机制,便于将删除的数据回收到垃圾桶里面去, 避免某些误操作删除一些重要文件。回收到垃圾桶里里面的资料数据,都可以进行恢复。

2. 垃圾桶机制配置

       HDFS 的垃圾回收的默认配置属性为 0,也就是说,如果你不小心误删除了 某样东西,那么这个操作是不可恢复的。 修改 core-site.xml : 那么可以按照生产上的需求设置回收站的保存时间,这个时间以分钟为单位, 例如 1440=24h=1 天。
<property>
<name>fs.trash.interval</name>
<value>1440</value>
</property>
然后重启 hdfs 集群

3. 垃圾桶机制验证

         如果启用垃圾箱配置,dfs 命令删除的文件不会立即从 HDFS 中删除。相反, HDFS 将其移动到垃圾目录(每个用户在/user/<username>/.Trash 下都有自己的 垃圾目录)。只要文件保留在垃圾箱中,文件可以快速恢复。 使用 skipTrash 选项删除文件,该选项不会将文件发送到垃圾箱。它将从 HDFS 中完全删除

文末

     部署是真麻烦,各种文档查半天,但是应用场景和功能都挺好的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/710170.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

仿element-ui 实现自己组件库 <3>

目录 input 组件封装 v-model用在组件上 显示和隐藏密码 封装switch组件 实现转换的功能 设置checkbox input 组件封装 首先input组件的基本框架和样式&#xff1a; <div class"miao-input"><input class"miao-input_inner" > </div…

Java | Leetcode Java题解之第151题反转字符串中的单词

题目&#xff1a; 题解&#xff1a; class Solution {public String reverseWords(String s) {StringBuilder sb trimSpaces(s);// 翻转字符串reverse(sb, 0, sb.length() - 1);// 翻转每个单词reverseEachWord(sb);return sb.toString();}public StringBuilder trimSpaces(S…

这份简历让一位程序员在谷歌获得30万美元

大家好&#xff0c;我是弗雷。每次都在让大家尝试走出职场&#xff0c;但今天我们却选择再次走进职场。 作为曾经的职场人&#xff0c;我深深明白简历的敲门砖作用&#xff0c;制作一份优质的简历至关重要。 你所见过的最优秀的简历是什么样子&#xff1f; 或者你想象中最优秀…

全息图分类及相位型全息图制作方法

全息图是一种光学器件&#xff0c;全息图分为振幅型和相位型全息图&#xff0c;振幅型全息图记录光的振幅信息即强度信息&#xff0c;相位型全息图记录光的相位信息&#xff0c;利用相位信息可以恢复光的波前形状&#xff0c;从而记录物体形状&#xff0c;这里主要介绍相位全息…

Java多线程面试重点-2

16.Synchronized关键字加在静态方法和实例方法的区别? 修饰静态方法&#xff0c;是对类进行加锁&#xff08;Class对象&#xff09;&#xff0c;如果该类中有methodA和methodB都是被Synch修饰的静态方法&#xff0c;此时有两个线程T1、T2分别调用methodA()和methodB()&#x…

深度学习与人工智能

深度学习&#xff0c;是一种特殊的人工智能&#xff0c;他与人工智能及机器学习的关系如下&#xff1a; 近些年来&#xff0c;基于人工神经网络的机器学习算法日益盛行起来&#xff0c;逐渐呈现出取代其他机器学习算法的态势&#xff0c;这主要的原因是因为人工神经网络中有一中…

AI 客服定制:LangChain集成订单能力

为了提高AI客服的问题解决能力&#xff0c;我们引入了LangChain自定义能力&#xff0c;并集成了订单能力。这使得AI客服可以根据用户提出的问题&#xff0c;自动调用订单接口&#xff0c;获取订单信息&#xff0c;并结合文本知识库内容进行回答。这种能力的应用&#xff0c;使得…

Android 13 高通设备热点低功耗模式(2)

前言 之前写过一篇文章:高通热点被IOS设备识别为低数据模式,该功能仿照小米的低数据模式写的,散发的热点可以达到被IOS和小米设备识别为低数据模式。但是发现IOS设备如果后台无任何网络请求的时候,息屏的状态下过一会,会自动断开热点的连接。 分析 抓取设备的热点相关的…

如何查找您的 SOLIDWORKS 序列号或许可证密钥

每个 SOLIDWORKS正版的软件都有自己的许可密钥&#xff0c;也称之为SOLIDWOKS的序列号。硕迪科技作为SOLIDKS正版软件代理商&#xff0c;我们的技术团队经常帮助客户查找他们的序列号。这篇文章将向您展示如何查找您的 SOLIDWORKS 序列号。 如果您拥有独立的 SOLIDWORKS 许可&…

碳化硅陶瓷膜良好的性能

碳化硅陶瓷膜是一种高性能的陶瓷材料&#xff0c;以其独特的物理和化学特性&#xff0c;在众多领域展现出了广泛的应用前景。以下是对碳化硅陶瓷膜的详细介绍&#xff1a; 一、基本特性 高强度与高温稳定性&#xff1a;碳化硅陶瓷膜是一种非晶态陶瓷材料&#xff0c;具有极高的…

[Vulnhub]Solid-State POP3邮件服务(James)+rbash逃逸

信息收集&SSH Server IP addressPorts Open192.168.8.100TCP:22,25,80,110,119,4555 Nmap 扫描: $ nmap -p- 192.168.8.100 --min-rate 1000 -sC -sV 结果: Host is up (0.00061s latency). Not shown: 65529 closed tcp ports (conn-refused) PORT STATE SERVICE…

Nacos启动报错

报错日志&#xff1a; Caused by: java.lang.NullPointerException at com.mysql.jdbc.ConnectionImpl.getServerCharset(ConnectionImpl.java:2983) at com.mysql.jdbc.MysqlIO.sendConnectionAttributes(MysqlIO.java:1873) at com.mysql.jdbc.Mysql…

Spring boot 启动报:Do not use @ for indentation

一、使用maven插件动态切换配置时出现报错 二、配置文件及pom 2.1 配置文件结构 2.2 application.yml spring: # 根据环境读取配置文件&#xff08;手动&#xff09; # profiles: # active: dev# 根据环境读取配置文件&#xff08;通过勾选maven插件&#xff09;profiles…

SAP Build 2-PDF数据提取与决策

0. 安装desktop agent 在后续过程中发现要预先安装desktop agent&#xff0c;否则没法运行自动化流程… 0.1 agent下载 参考官方文档说明 https://help.sap.com/docs/build-process-automation/sap-build-process-automation/create-user-in-rbsc-download-repository?loca…

AI 一键换脸,背景替换,ioDraw让图片更有趣

还在为繁琐的图片处理而烦恼吗&#xff1f;快来试试ioDraw的AI图片工具&#xff01; 它集图像识别、图像生成、智能换脸、背景替换、图像融合、肖像风格化、空间风格化、智能扩图、智能抠图、画质提升、美颜、拉伸修复、透视校正等功能于一身&#xff0c;为你提供前所未有的图…

网络攻击第二节考题有问题的

这个选ab&#xff0c;不懂a是啥这俩是啥 DHCP欺骗-教程详解-CSDN博客 OSI七层网络攻击行为及防范手段_物理层的攻击方式-CSDN博客 这选项讲了吗 选abc 假消息攻击-CSDN博客 啥是ips防护 12题选adcd 为啥连接别人的wifi会被dns欺骗&#xff1f;&#xff1f; 连接的那个wifi…

appproxy 一个轻量级的VPN代理工具,支持HTTP, SOCKS5协议

appproxy 项目背景 在分析app的时候,偶尔需要抓包,尝试了目前比较常见的代理工具Drony Postern ProxyDroid 发现都有一个相同的问题,对于较新的Android系统不太友好,要么app列表显示不正常,或者界面过于复杂,往往设置之后经常会失效,偶然在play上发现一个比较新的代理工具,界…

I/O Stream设计实验

实验要求和目的 深入理解java输入输出流相关类的基本用法&#xff0c;并且可以掌握Java程序的编写和调试。 实验环境 Java语言&#xff0c;PC或android平台 实验具体内容 设计和编写以下程序&#xff1a; 程序1&#xff1a; 从键盘读入多行字符串&#xff08;英文&#xf…

终于把AUC的计算方式搞懂了!

1. 横纵坐标 纵坐标&#xff1a;sensitivity或者TPR 横坐标&#xff1a;FPR 或者 1-Specificity 2. 计算方法 2.1 方法1 def get_roc_auc(y_true, y_score):"""正样本得分大于负样本得分的概率&#xff0c;需要遍历每个正样本和每个负样本1. 选取所有正样本与…

蓝牙资讯|苹果iOS 18增加对AirPods Pro 2自适应音频的更多控制

苹果 iOS 18 系统将为 AirPods Pro 2 用户带来一项实用功能 —— 更精细的“自适应音频”控制。AirPods Pro 2 的“自适应音频”功能包含自适应降噪、个性化音量和对话增强等特性&#xff0c;可以根据周围环境自动调节声音和降噪效果。 当更新至最新测试版固件的 AirPods Pro 2…