LLM 大模型学习:量化技术、QLoRA、量化库

模型的推理过程是一个复杂函数的计算过程,这个计算一般以矩阵乘法为主,也就是涉及到了并行计算。一般来说,单核CPU可以进行的计算种类更多,速度更快,但一般都是单条计算;而显卡能进行的都是基础的并行计算,做矩阵乘法再好不过。如果把所有的矩阵都加载到显卡上,就会导致显卡显存的占用大量增加,尤其是LLM模型大小从7b、14b、34b到几百b不等,占用显存的大小就是惊人的数字,如何在减少运算量和显存占用的条件下,做到推理效果不下降太多呢?在这里需要引入浮点数和定点数的概念。

1.量化的定义和基本原理

量化是将模型浮点数变为定点数运行的过程。

双精度浮点数:在PyTorch中用torch.float64表示,或者在其他语言中也称为double类型,在LLM训练中一般比较少用

全精度浮点数:在PyTorch中用torch.float32表示

低精度浮点数:在PyTorch中用torch.bfloat16和torch.float16表示。这两个浮点数的差别在上图中可以表示:

  1. bfloat16的小数部分较短,整数部分较长,这会有利于在训练中减少梯度爆炸的情况(即梯度累加值超过了最大值),但是这种数据类型是在N系列显卡Ampere系列才支持的,即30系列显卡。
  2. float16的小数部分较长,这意味着在精度控制上float16更好,但整数部分较短,比较容易梯度爆炸。

那么是否有更加减少显存占用和计算量的数值表达方式呢?那么可以考虑是否把浮点数转换为定点数(整数),整数计算更快更省显存,如果计算精度下降不大就很完美了。这种用整数计算代替浮点数计算的方法就是量化

量化的基本原理是根据每个tensor的浮点型最大值和最小值,将其映射为一个固定范围的整形数值集合,比如[-127~127]。假设一个简单的公式:qweight=round(weight/scale),其中qweight代表量化后权重,weight代表量化前权重,scale代表缩放因子,可以看到在进行缩放后为了将浮点型转换为整数过程中增加了round操作丢失了小数部分。在后续计算或反量化为浮点型时存在无法完全还原的情况,这就是精度损失。

按照量化发生的步骤区分,可以划分为PTQ(训练后量化,或离线量化)和QAT(训练感知型量化,或在线量化)。PTQ量化可以分为data-free和calibration两种,前者不使用数据集进行校准直接计算量化因子,后者会根据少量真实数据进行统计分析并对量化因子进行额外校准,但耗费的时间更长。QAT量化会先在待量化的算子上增加一个伪量化结构,并在训练时模拟量化过程并实时更新计算量化因子(类似反向传播过程)及原始权重。QAT由于较为复杂一般作为辅助措施存在,用于改进PTQ量化的技术手段。

按照量化方法可以划分为线性量化、非线性量化(如对数量化)等多种方式,目前较为常用的是线性量化。其中线性量化又可以按照对称性划分为对称量化和非对称量化,非对称量化为了解决weight分布不均匀问题,其在公式中增加了zero_point项:qweight=round(weight/scale + zero_point),使稠密数据部分可以得到更宽泛的数值范围。

浮点数计算机存储方式示意图

按照量化粒度划分可以分为**逐层量化(每层使用一套量化因子)、逐组量化(在每层中按照group使用一套量化因子)、逐通道量化(按channel划分量化因子)**等几种方式。

按照量化最大值的阈值区分,可以分为饱和量化和不饱和量化两种。不饱和量化按照浮点数最大值和量化后最大值的比例计算量化因子,由于原始weight的非均匀性会导致某些整形数值范围存在权重空缺。饱和量化会计算一个中间值以计算出量化因子,因此会舍弃一部分不重要数据,将重要数据尽量均匀的分布到量化数值范围内。

按照量化后的比特数划分,可以分为2比特量化,4比特量化,8比特量化等类型。

一般来说,PyTorch中量化模块的forward过程会先对量化权重进行反量化后使用浮点数进行计算。

量化简单来说:将用小数计算结果的模型,转换成用整数计算,中间自然有精度损失(因为小数位没了,而且浮点数翻译成整形再转回来是有损压缩过程)。

有了这个定义,我们就可以继续下面要讲的部分。在继续下面的内容之前,还是建议大家把上面的模型量化基础读一遍。下面会基于之前的文章,侧重几个方面进行技术分析:

  • BnB/HQQ/AWQ/GPTQ等几种量化方法的原理
  • 这几种量化方法一般怎么使用

1.1 原理篇

1.1.1 BnB量化

BnB全称是BitsAndBytes,是几乎最早集成到transformers框架中的量化算法。

我们回顾一下量化的基本思路:

  1. 按照整数位数,定义最大值和最小值
  2. 按照浮点数和整数的范围比例,对浮点数进行缩放
  3. 在forward时,将hidden_states按1-2步骤进行缩放,或者将weights反量化为浮点数进行计算

1.1.2 absmax量化

bitsandbytes.LLM.int8()算法也是基于上面的思路的,特殊之处在于,在分析weights矩阵的稀疏性质后,总结了下面的特性:

  1. 模型weights和hidden_states中存在离群值,比例不到1%
  2. 离群值比例虽然低,但是对量化造成了性能恶化

针对离群值的量化算法其实有很多方式,比如分段量化,BnB采用了针对离群值保持低精度浮点数的做法:

  1. 从输入的隐藏状态中,按列提取离群值
  2. 对离群值以低精度浮点型进行矩阵乘法,对非离群值以int8进行矩阵乘法
  3. 对非离群值的结果反量化,将两部分加起来得到最终结果

离群值/非离群值量化

在实际实验中,BnB算法发现以6为尺度分割出离群值是最佳的。

由于BnB量化不需要任何校准数据集,因此其量化速度很快,这也是为什么在QLoRA训练时,会直接传入BitsAndBytesConfig直接对原始模型量化后训练。

而在QLoRA论文中,作者介绍了4bit量化、双重量化和分页optimizer的技术方案。

  • 4bit量化支持两种数据类型:fp4和nf4。fp4是四bit浮点数,包含一位符号位,两位整数位和一位小数位。nf4全称是4-bit NormalFloat,和fp4类似,但是其数值分布并不均匀,呈现正态分布。这是因为一般LLM的矩阵参数概率密度也是呈现正态分布的。在4bit量化中,也更推荐使用nf4数据类型,因为可以比较好的契合参数特性。

  • nf4的量化思路可以理解为:一般模型weights是均值为0,标准差为σ的的分布,因此该分布可以转换为标准高斯分布。这样可以从标准高斯分布中取样一定分位数的量化间隔并设定量化值(该值采用两边分位数的均值),并且正则化到[-1, 1]区间中。后续就可以将模型weights通过absmax量化到该区间中。

  • 双重量化指的是针对量化常数的二次量化。由于BnB的量化是块量化(block-wise),因此块级别的常数存储也会占用GPU memory。对此,在一次量化后针对此类常数进行二次量化,进一步压缩显存空间。

在transformers.intergrations.bitsandbytes.py中:

这里是替换Linear和Conv算子为bnb的起始点。

bitsandbytes.nn.modules.py:

双重量化。可以看到在weights迁移到cuda的时机进行量化。

继续到C代码bitsandbytes.csrc.kernels.cu:

可以看到针对离群点进行了阈值判断并有选择地量化。如果大于离群阈值则直接置0。

  • 4bit量化:

可以看到量化后针对偶数index的参数左移四位,和相邻参数构成了一个完整的byte。

使用QLoRA进行训练请参考下个章节。

1.1.3 GPTQ量化

说到GPTQ,就要说起它的老祖先OBD、OBS、OBC等剪枝算法(否则无法理解GPTQ)。本质上来说,参数剪枝是参数量化的一种特殊情况(把参数直接置为0这个特殊量化值)。

1.1.4 AWQ量化

1.1.5 HQQ量化

小结

我们在这里做个总结:

前提:量化是把模型的浮点型参数转换为整形(至少是更低的bit数)的过程,减少显存占用。

  1. BnB量化建议设立阈值,将离群点和非离群点分开处理,其中离群点不进行量化,非离群点进行8bit量化。同时,在4bit量化时,支持了nf4格式,该格式的数值分布并不均匀(为正态分布),使数值分布更符合LLM参数分布。
  2. GPTQ使用了泰勒级数分解,使用海森矩阵评估参数重要性以及更新量化后的参数,并利用现代GPU的特点,进行了并行计算,使显存占用和处理速度大大增加,但是它需要量化集辅助量化。
  3. AWQ认为部分参数更加重要,通过激活值尺度评估了重要参数后,对这些参数按组进行了缩放,达到了减小Loss的效果,由于需要激活值,因此AWQ也需要量化集辅助量化。
  4. HQQ通过对零点量化的公式转换,将其分解为两个子问题分别求解,找到最优的z,该迭代对输入无要求,因此不需要量化集。

2.QLoRA

LoRA部分可以参考另外一篇文章:

简单来说,LoRA是附着在模型上的额外参数矩阵,在训练时冻结原模型,仅训练LoRA部分。如果原模型是量化后的weights(即左边的Pretrained Weights部分),那么和LoRA可以很匹配:原模型占用的显存大大减小了,LoRA部分保持fp16/bf16可以正常forward/backward。

2.1 应用

除上面介绍的量化方法外,还有很多其他类型的量化方法,比如AQLM、EETQ、GGUF等,这么多的量化方式,一个一个了解使用太麻烦了,在不修改训练代码的情况下适配多种量化策略是非常重要的

在这里使用了魔搭社区的SWIFT框架来进行量化训练。该框架在github上是开源的:

[github.com/modelscope/…]

或者通过pip安装:

pip install ms-swift

#autoawq和cuda版本有对应关系,请按照`https://github.com/casper-hansen/AutoAWQ`选择版本
pip install autoawq -U

#auto_gptq和cuda版本有对应关系,请按照`https://github.com/PanQiWei/AutoGPTQ#quick-installation`选择版本
pip install auto_gptq -U

#hqq和eetq使用暂时需要从源码下载transformers和peft
pip install git+https://github.com/huggingface/transformers
pip install git+https://github.com/huggingface/peft.git
#hqq
pip install hqq
#eetq
git clone https://github.com/NetEase-FuXi/EETQ.git
cd EETQ/
git submodule update --init --recursive
pip install .

回顾下上面提到的量化方式,bnb/hqq/eetq是不需要量化数据集的,因此可以在训练前直接量化模型,速度很快。因此推荐即时量化后直接QLoRA训练模型:

swift sft --model_type llama3-8b-instruct --dataset alpaca-en --quantization_bit 8 --quant_method bnb --sft_type lora

也可以替换为hqq或者eetq:

swift sft --model_type llama3-8b-instruct --dataset alpaca-en --quantization_bit 8 --quant_method eetq --sft_type lora
#--quant_method eetq

其中bnb支持4/8 bit量化,eetq支持8bit量化,hqq支持1/2/3/4/8bit量化。

而GPTQ和AWQ由于需要量化集的存在,且量化会花费较长时间,因此一般在训练后(或者针对原始模型)再单独量化:

#GPTQ
OMP_NUM_THREADS=14 swift export --model_type llama3-8b-instruct --quant_method gptq --dataset alpaca-zh alpaca-en sharegpt-gpt4-mini --quant_seqlen 4096 --quant_bits 4
#AWQ
swift export --model_type llama3-8b-instruct --quant_bits 4 --quant_method awq --quant_n_samples 64 --quant_seqlen 4096 --dataset alpaca-zh alpaca-en sharegpt-gpt4-mini

注意,实际使用GPTQ量化时需要指定OMP_NUM_THREADS=N,否则会出现CPU占满阻塞的问题。

swift export指令会使用指定的数据集对模型进行量化,并在本地保存量化后的模型,默认的保存路径为

‘{model_type}-{quant_method}-{quant_bits}’,也可以通过–quant_output_dir来指定

QLoRA可以支持FSDP(完全分片数据并行技术),因此可以使用BNB+LoRA在两张24G显卡上运行一个70B模型的训练:

#源代码clone
#cd examples/pytorch/llm
#vim fsdp.sh并写入下面的内容
#pip install bitsandbytes>=0.43.0
nproc_per_node=2

CUDA_VISIBLE_DEVICES=0,1 \
accelerate launch --config_file "./scripts/llama2_70b_chat/qlora_fsdp/fsdp_offload.json" \
    llm_sft.py \
    --model_type llama2-70b-chat \
    --model_revision master \
    --sft_type lora \
    --tuner_backend peft \
    --template_type AUTO \
    --dtype bf16 \
    --output_dir output \
    --dataset leetcode-python-en \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 2048 \
    --check_dataset_strategy warning \
    --quantization_bit 4 \
    --bnb_4bit_comp_dtype AUTO \
    --bnb_4bit_quant_storage bfloat16 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dtype AUTO \
    --lora_dropout_p 0.05 \
    --lora_target_modules DEFAULT \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0.1 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 50 \
    --save_steps 50 \
    --save_total_limit 2 \
    --logging_steps 10 \

如果只是想体验量化后的模型推理阶段,可以借助不需要校准数据集的量化方法,使用swift infer来量化模型并推理,大大减少模型推理所需的显存占用

CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --quant_method bnb \
    --quantization_bit 4

CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --quant_method hqq \
    --quantization_bit 4

CUDA_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat \
    --quant_method eetq \
    --dtype fp16

3.常见量化库

3.1AutoGPTQ

AutoGPTQ是一个易于使用的低延迟语言模型(LLM)量化软件包,具有用户友好的API,基于GPTQ算法。一个基于 GPTQ 算法,简单易用且拥有用户友好型接口的大语言模型量化工具包。

  • 推理速度

以下结果通过[这个脚本]生成,文本输入的 batch size 为 1,解码策略为 beam search 并且强制模型生成 512 个 token,速度的计量单位为 tokens/s(越大越好)。

modelGPUnum_beamsfp16gptq-int4
llama-7b1xA100-40G118.8725.53
llama-7b1xA100-40G468.7991.30
moss-moon 16b1xA100-40G112.4815.25
moss-moon 16b1xA100-40G4OOM42.67
moss-moon 16b2xA100-40G106.8306.78
moss-moon 16b2xA100-40G413.1010.80
gpt-j 6b1xRTX3060-12G1OOM29.55
gpt-j 6b1xRTX3060-12G4OOM47.36

量化模型通过能够最大化推理速度的方式加载。

该库需要引入额外的校准数据集进行量化校准。相比bitsandbytes量化精度较高,推理速度较快,但训练后不支持合并adapter

#例子来自于https://github.com/PanQiWei/AutoGPTQ
from modelscope import AutoTokenizer, snapshot_download
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import logging
import shutil
import os

logging.basicConfig(
    format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)

pretrained_model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
quantized_model_dir = "qwen-1_8B-4bit"

shutil.rmtree(quantized_model_dir, ignore_errors=True)
shutil.copytree(pretrained_model_dir, quantized_model_dir)
for _file in os.listdir(quantized_model_dir):
    if ".safetensors" in _file or ".bin" in _file:
        os.remove(os.path.join(quantized_model_dir, _file))

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, trust_remote_code=True)
examples = [
    tokenizer(
        "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
    )
]

quantize_config = BaseQuantizeConfig(
    bits=4,  # quantize model to 4-bit
    group_size=128,  # it is recommended to set the value to 128
    desc_act=False,  # set to False can significantly speed up inference but the perplexity may slightly bad
)

#load un-quantized model, by default, the model will always be loaded into CPU memory
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config, trust_remote_code=True).to(0)

#quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
model.quantize(examples)

#save quantized model
model.save_quantized(quantized_model_dir)

#save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True)

#load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", trust_remote_code=True)
#inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))

在SWIFT中,可以使用已经量化好的AutoGPTQ模型直接进行训练:

swift sft --model_id_or_path qwen/Qwen-7B-Chat-Int4 --model_revision master --sft_type lora --tuner_backend swift --template_type qwen --dtype fp16 --output_dir output --dataset leetcode-python-en --train_dataset_sample -1 --num_train_epochs 1 --max_length 512 --check_dataset_strategy warning --lora_rank 8 --lora_alpha 32 --lora_dropout_p 0.05 --lora_target_modules ALL --gradient_checkpointing true --batch_size 1 --weight_decay 0.01 --learning_rate 1e-4

上面的命令行中,qwen/Qwen-7B-Chat-Int4是已经量化好的Qwen-7B-Chat模型。

3.2 Bitsandbytes

bitsandbytes是一种data-free的量化库。该量化方法速度较快(因为其不需要数据校准),因此可以在模型加载时动态量化,且该方法训练速度较快,因此训练兼容性较好,一般用于QLoRA训练中,且训练后可以合并adapter。当由于其没有数据校准过程,因此精度较AutoGPTQ较低。

  • bitsandbytes的特点
    • 混合精度分解的8位矩阵乘法
    • LLM.int8()推断
    • 8位优化器:Adam、AdamW、RMSProp、LARS、LAMB、Lion(节省75%的内存)
    • 稳定的嵌入层:通过更好的初始化和归一化改进稳定性
    • 8位量化:分位数、线性和动态量化
    • 快速分位数估计:比其他算法快100倍
from modelscope import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained(
  'qwen/Qwen-1_8B-Chat',
  load_in_8bit=True,
  trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained('qwen/Qwen-1_8B-Chat', trust_remote_code=True)

print(model(**tokenizer('how are you?', return_tensors='pt')))

3.3 GGML

GGML和GGUF是[GGML] C++推理库的两种量化格式,其中GGUF格式较新,可以保留模型版本等其他自定义信息。这两种格式也是PTQ形式的量化算法,但GGML和GGUF格式的量化算法更适配于CPU推理,因此在CPU上运行更快,而GPTQ量化对GPU更加友好,两者的推理精度相仿。因此,*.cpp类型使用了GGML推理库的推理框架都更适配于CPU推理。

GGML是一个专注于机器学习的C库。它由Georgi Gerganov创建,这就是缩写“GG”的含义。这个库不仅提供了机器学习的基础元素,如张量,而且还提供了一种独特的二进制格式来分发LLM(Machine Learning Models)。最近,这个格式改为了GGUF。这种新格式被设计为可扩展的,以便新功能不会影响现有模型的兼容性。

它还将所有的元数据集中到一个文件中,例如特殊标记、RoPE缩放参数等等。简言之,它解决了一些历史上的痛点,并且应该具备未来兼容性。更多信息,请访问此地址查看规范。

接下来的文章中,我们将称之为“GGML模型”的所有模型,无论是使用GGUF还是之前的格式。

GGML是为与 Georgi Gerganov 创作的 llama.cpp 库一起使用而设计的。该库是用 C/C++ 编写的,用于高效地推断 Llama 模型。它可以加载 GGML 模型并在 CPU 上运行。最初,这是与 GPTQ 模型的主要区别,后者是在 GPU 上加载和运行的。然而,现在您可以使用 llama.cpp 将 LLM 的某些层卸载到 GPU 上。举个例子,7b 参数模型有 35 个层。这极大地加快了推断速度,并使您能够运行不适合 VRAM 的 LLM。

如果命令行工具是你的菜,llama.cpp和GGUF支持已经集成到许多图形界面中,例如oobabooga的文本生成Web界面,koboldcpp,LM Studio或ctransformers。

你可以使用这些工具加载你的GGML模型并以类似ChatGPT的方式与它们进行交互。幸运的是,许多量化模型可以直接在Hugging Face Hub上获取。你很快就会注意到大部分模型都是由LLM社区的知名人物TheBloke进行量化的

3.4 AWQ

方式假设不是所有权重都影响模型性能,因此在量化过程中会对特殊权重进行特殊处理以减轻量化过程中的精度损失。因此在和GPTQ量化保持类似推理速度的同时可以具备更好的精度。

AWQ是一种对模型权重进行低比特量化的方法,使用该方法可以将模型权重(Weight)量化为4bit,并在计算激活值(Activation)时反量化为FP16,即W4A16。也可以基于AWQ方法将权重量化为3bit/8bit,并在计算时是使用4bit/8bit/16bit,由此衍生出W4A4、W4A8等一系列方法。作者在原文中指出,W4A16可以在精度损失较小的情况下,大幅降低内存占用,且提升模型推理速度,是最常用的方法,因此AWQ和W4A16同镜率较高。

AWQ(Activation-aware Weight Quantization )方法由 MIT、SJTU、Tsinghua University 联合提出的方法,一种对大模型仅权重量化方法。该方法基于”权重并不同等重要“的观察,仅保护1%的显著权重(salient weight)可以大大减少量化误差。AWQ不依赖于任何反向传播或重建,因此可以很好地保持LLM在不同领域和模式上的泛化能力,而不会过拟合到校准集;它也不依赖于任何数据布局重新排序,保持硬件效率。AWQ在多种语言建模、常识问答和领域特定基准测试中优于现有工作。得益于更好的泛化能力,它在指令微调LM和首次实现多模态LM方面取得了出色的量化性能。论文还实现了有效的张量核心内核,以加速AWQ的无重新排序在线反量化,实现速度比GPTQ快1.45倍,比cuBLAS FP16实现快1.85倍。

目前VLLM对AWQ的支持较好, 可以考虑在推理加速时使用AWQ量化方式。

  • AWQ 量化与 GPTQ 量化对比

AWQ 量化精度比 GPTQ 高一点,并且 AWQ 比 GPTQ 更容易实现,[计算性能]更高。

相比 AWQ 采用 heuristic 的方法来寻找[最佳的]scale 和 clip 系数,新的 OminiQuant 则采用训练的方式来获得相应的系数,论文数据比 AWQ 获得更高的量化准确度。

AWQ 的原理非常简单,就是计算一个 scale 系数 tensor,shape 为 [k],k 为矩阵乘的权重 reduce 的维度大小。对激活除以该 tensor,并对矩阵乘的权重乘以该 tensor,这降低了权重量化的难度,使得权重可以采用常规的 group 量化 (直接根据最大最小值计算 scale, zero point)。AWQ 的核心技术一是这个对激活和权重应用 scale 的方法,另外就是如何计算这个 scale tensor。因为激活是 fp16 不量化,对激活进行 scale 一般不会牺牲精度,因此可以对权重进行一些处理降低量化的难度。

虽然 AWQ 与 GPTQ 两者都采用 group 量化,对 shape 为 [k, n] 的矩阵乘权重都生成(k/group) * n 套量化系数。但是 GPTQ 通常采用 act_order=True 选项,这个导致每一个 group 并非使用一组相同的 scale 和 zero point 系数,而是每个 k 位置对应的向量都对应不同的 scale 和 zero point(不同 k 位置共享一组系数,但是这个位置是随机的),每读取一个元素都要读取 scale 和 zero point,导致反量化效率很低。而 act_order=False 时,每一个向量 group size 元素都共享同一组 scale 和 zero point 系数,这样反量化只需要每隔 group size 个元素才需要重新读取一次 scale 和 zero point,反量化效率很高。AWQ 反量化跟 GPTQ act_order=False 是一样的,因此计算效率比较高。

另外 AWQ 虽然要对激活乘以一个 scale tensor,但是这个 tensor 通常可以合并到前面的 RMS NORM 上面,使得这个操作不会引入额外计算。

  • AWQ 量化实践

awq 量化例子 llama_example.sh 给了 4 个步骤

MODEL=llama-7b
 
#run AWQ search (optional; we provided the pre-computed results)
python -m awq.entry --model_path /dataset/llama-hf/$MODEL \
    --w_bit 4 --q_group_size 128 \
    --run_awq --dump_awq awq_cache/$MODEL-w4-g128.pt
 
#evaluate the AWQ quantize model (simulated pseudo quantization)
python -m awq.entry --model_path /dataset/llama-hf/$MODEL \
    --tasks wikitext \
    --w_bit 4 --q_group_size 128 \
    --load_awq awq_cache/$MODEL-w4-g128.pt \
    --q_backend fake
 
#generate real quantized weights (w4)
python -m awq.entry --model_path /dataset/llama-hf/$MODEL \
    --w_bit 4 --q_group_size 128 \
    --load_awq awq_cache/$MODEL-w4-g128.pt \
    --q_backend real --dump_quant quant_cache/$MODEL-w4-g128-awq.pt
 
#load and evaluate the real quantized model (smaller gpu memory usage)
python -m awq.entry --model_path /dataset/llama-hf/$MODEL \
    --tasks wikitext \
    --w_bit 4 --q_group_size 128 \
    --load_quant quant_cache/$MODEL-w4-g128-awq.pt

第一步生成 scale 和 clip 数据并保存文件。

第二步为加载第一步生成的量化系数,并评估量化性能。

第三步加载第一步生成的量化系数,对模型真实权重进行量化和保存量化模型权重。

第四步为评估真实量化模型。

当然这几个步骤是可以通过参数配置合并为一个的。

第一步会下载一个数据集,在 utils/calib_data.py。默认的数据集可能无法下载,可以进行替换,或者手动下载下来用本地路径进行替换。

AWQ 量化通过 auto_scale_block 和 auto_clip_block 方法对每个权重生成一组 scale 和 clip tensor,通过一个 list 存放到量化系数结果里面。

auto_scale_block 的核心为_auto_get_scale,基于当前 transformer layer 的输入,一个 module2inspect 层用于评估 loss,然后通过 grid search 的方式来搜索最佳的 scale 系数。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉AGI大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/708042.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

javaweb和Mysql学习

javaweb学习 HTML 结构标签 HTML的结构标签分为 <html>&#xff1a;定义HTML文档的根元素。<head>&#xff1a;包含了文档的元&#xff08;meta&#xff09;、标题&#xff08;title&#xff09;、样式表&#xff08;style&#xff09;和脚本&#xff08;scrip…

nginx 启动报错:Failed to start The nginx HTTP and reverse proxy server.

1&#xff0c;启动 nginx报错 systemctl start nginx[rootlaoban yum.repos.d]# systemctl start nginx Job for nginx.service failed because the control process exited with error code. See "systemctl status nginx.service" and "jetails. [rootlaoban…

俄罗斯Yandex推广投放如何开户?Yandex广告开户和代运营推广流程详解_俄罗斯_受众_搜索引擎

在俄罗斯进行Yandex广告推广是一种有效的在线营销方式&#xff0c;特别是针对俄罗斯市场。Yandex是俄罗斯最受欢迎的搜索引擎&#xff0c;类似于Google在全球范围内的地位。以下是通过Yandex广告推广的一般步骤&#xff0c;以及如何通过上海上弦进行广告开户和代运营。 1. Yan…

STL-常用容器

3.1.1. string基本概念 本质&#xff1a; string是C风格的字符串&#xff0c;char*是C语言风格的字符串string本质上是一个类 string和char*的区别&#xff1a; char*是一个指针string是一个类&#xff0c;类内部封装并负责管理char*&#xff0c;是一个char*型的容器 特点&a…

django-vue-admin 本地部署

一、项目地址 主分支&#xff1a;master&#xff08;稳定版本&#xff09; 开发分支&#xff1a;develop django-vue3-admin-masterhttps://gitee.com/huge-dream/django-vue3-admin 注意&#xff1a;下载master分支zip代码包&#xff0c;解压后删掉web\src\views\syst…

数据结构笔记补充问题

1、假设线性表L采用单链表存储结构&#xff0c;设计一个算法&#xff0c;在L的数据元素最大值之前插入&#xff08;假设L的各个数据元素值不同&#xff09;数据元素x。 基本思想&#xff0c;先查找到最大元素对应的结点&#xff0c;再在之前插入x对应的结点&#xff1b; 设计算…

Android开发AndroidStudio安装教程

本文图示展示AndroidStudio安装教程。 目录 一、下载安装包 二、安装 一、下载安装包 https://developer.android.google.cn/studio?hlzh-cn 二、安装 双击exe Next Next Next 默认点击Install Next 点击finish进入设置文件界面。 如果本地有设置文件&#xff0c;选择C…

Zabbix 7.0 新增功能亮点(二)——history.push API方法

Zabbix7.0LTS一经发布便吸引了众多运维小伙伴的关注&#xff0c;乐维社区forum.lwops.cn也伴随着不少小伙伴的热议与探讨&#xff0c;话不多说&#xff0c;抓紧上车。 前面我们介绍了zabbix 7.0 新增功能亮点&#xff08;一&#xff09;——T参数&#xff0c;本篇将向大家介绍z…

【掌握C++模板进阶】:高级编程的艺术

&#x1f4c3;博客主页&#xff1a; 小镇敲码人 &#x1f49a;代码仓库&#xff0c;欢迎访问 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&#x1f3fd;留言 &#x1f60d;收藏 &#x1f30f; 任尔江湖满血骨&#xff0c;我自踏雪寻梅香。 万千浮云遮碧…

【FreeRTOS】创建任务-声光色影

参考《FreeRTOS入门与工程实践(基于DshanMCU-103).pdf》 目录 1 基本概念2 任务创建与删除2.1 什么是任务2.2 创建分配内存2.2.1 动态任务2.2.1 静态分配内存 2.3 示例1: 创建任务2.3.1 声2.3.1.1 music.c2.3.1.2 music.h2.3.1.4 硬件接线 2.3.2 光2.3.3 色2.3.4 影 在本章中&a…

海南云亿商务咨询有限公司解锁抖音电商新纪元

在当今数字化浪潮中&#xff0c;抖音电商以其独特的魅力和强大的用户基础&#xff0c;迅速成为企业营销的新宠。海南云亿商务咨询有限公司&#xff0c;作为专注于抖音电商服务的领先企业&#xff0c;凭借专业的团队和丰富的经验&#xff0c;为众多企业提供了高效、精准的电商服…

试乘试驾预约小程序源码系统 前后端分离 带完整的代码包+搭建教程

系统概述 试乘试驾预约小程序源码系统是一款专为汽车行业打造的便捷工具。它采用前后端分离的架构&#xff0c;确保了系统的稳定性和高效性。通过这套源码系统&#xff0c;用户可以轻松搭建自己的试乘试驾预约平台&#xff0c;为汽车经销商和消费者提供更好的服务体验。 代码…

手把手教程本地调试Datax

背景&#xff1a;使用Datax做数仓同步数据得工具&#xff0c;有时需要自己开发或者修改某个reader或writer插件&#xff0c;那么本地调试就很重要。 一. 下载 从GitHub上下载或者clone下来Datax项目。 https://github.com/alibaba/DataX 找到Core模块&#xff0c;运行入口就…

个人商业模式画布 | 10分钟+6张图,帮你重新定位个人发展!

在个性化的时代浪潮中&#xff0c;构建个人IP成为了提升个人影响力的黄金通道。之前分享过企业的商业模式画布&#xff0c;很受大家喜欢&#xff0c;今天我们分享个人商业模式画布&#xff0c;它适用于个人发展&#xff0c;可以帮助你有效地打造个人品牌&#xff0c;重塑你的职…

java如何预防sql注入

1 sql注入 1.1 使用字符串拼接导致数据异常 sql语句拼接 // 构建SQL查询语句&#xff0c;注意这里存在SQL注入风险String sql "select name,age from user where name" username " and password " password "";System.out.println("s…

Stable diffusion3效果比midjourney强很多吗,未来会开源吗?

经过一个多月的期待&#xff0c;Stable Diffusion 3&#xff08;SD3&#xff09; 终于向会员开放了API接口&#xff0c;尽管每个用户的使用配额相对有限&#xff0c;据用户反馈&#xff0c;生成六张图像便可能耗尽配额。 SD曾依靠开源策略与竞争对手抗衡&#xff0c;但目前似…

和鲸科技携手浙江大学地球科学学院,助推地球科学研究范式变革

近日&#xff0c;浙江省资源与环境信息系统重点实验室&#xff08;下简称“实验室&#xff09;与上海和今信息科技有限公司&#xff08;下简称“和鲸科技”&#xff09;签订合作框架协议&#xff0c;双方将以助推“数据算力模型科研场景”的地球科学研究范式变革&#xff0c;孕…

kettle从入门到精通 第六十九课 ETL之kettle kettle cdc mysql,轻松实现增量同步

1、之前kettle cdc mysql的时候使用的方案是canalkafkakettle&#xff0c;今天我们一起学习下使用kettle的插件Debezium直接cdc mysql。 注&#xff1a;CDC (Change Data Capture) 是一种技术&#xff0c;用于捕获和同步数据库中的更改。 1&#xff09;Debezium步骤解析mysql b…

【PyTorch 新手基础】Regularization -- 减轻过拟合 overfitting

Overfit 过拟合&#xff0c;效果如最右图所示 常见应对方案如下&#xff1a; 增大数据集入手&#xff1a;More data or data argumentation简化模型参数入手&#xff1a;Constraint model complexity (shallow model, regularization) or dropout dropout: torch.nn.Dropout(0…

沉睡而且“狡猾”的特工:大模型也可以是!

大模型技术论文不断&#xff0c;每个月总会新增上千篇。本专栏精选论文重点解读&#xff0c;主题还是围绕着行业实践和工程量产。若在某个环节出现卡点&#xff0c;可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技&#xff08;Mamba,xLSTM,KAN&#xff09;则提…