【课程总结】Day8(上):深度学习基本流程

前言

在上一篇课程《【课程总结】Day7:深度学习概述》中,我们了解到:

  • 模型训练过程→本质上是固定w和b参数的过程;
  • 让模型更好→本质上就是让模型的损失值loss变小;
  • 让loss变小→本质上就是求loss函数的最小值;

本篇文章,我们将继续深入了解深度学习的项目流程,包括:批量化打包数据、模型定义、损失函数、优化器以及训练模型等内容。

求函数最小值回顾

y = 2 x 2 y=2x^2 y=2x2,我们回顾使用pytorch框架求函数最小值,其过程大致如下:

备注:代码不再重复赘述,回顾代码请见使用pytorch求函数最小值

深度学习基本流程

由于训练的本质:求loss函数的最小值;所以,我们类比求 y = 2 x 2 y=2x^2 y=2x2最小值的过程,来看一下线性回归训练(也就是求loss最小值)的过程,其流程如下:

相比于求 y = 2 x 2 y=2x^2 y=2x2最小值的过程,我们有如下调整:

  • 替换:随机选择出生点→准备训练数据(本例中训练数据先模拟生成)
  • 替换:定义原始函数→定义模型
  • 增加:初始化优化器(训练时要定义损失函数,我们常用MSE)
  • 替换:输出最小值位置→输出训练后的模型权重和偏置

具体代码如下:

import torch
import torch.nn as nn
import torch.optim as optim

# 生成模拟数据
torch.manual_seed(42)
x_train = torch.randn(100, 13)  # 100个样本,每个样本有13个特征
y_train = torch.randn(100, 1)   # 每个样本对应一个输出值

# 定义模型
model = nn.Linear(13, 1)  # 输入特征数为13,输出特征数为1

# 初始化优化器
criterion = nn.MSELoss()  # 均方误差损失
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 随机梯度下降优化器

# 迭代次数和学习率
epochs = 1000
learning_rate = 1e-2

# 使用 PyTorch 进行梯度下降
for _ in range(epochs):
    optimizer.zero_grad()  # 梯度清零

    outputs = model(x_train)  # 正向传播
    loss = criterion(outputs, y_train)  # 计算损失
    loss.backward()  # 反向传播
    optimizer.step()  # 更新参数

# 输出最终模型参数
print("线性回归模型的权重:", model.weight)
print("线性回归模型的偏置:", model.bias)

运行结果:

至此,我们完成了线性回归模型的训练。接下来,我们参照上面代码,再深入理解一下相关的基础理论。

模型 model

  • 前向传播的定义:把特征 X 带入模型 model ,得到预测结果 y_pred

    • 训练时:自动在底层构建计算图(把正向传播的流程记录下来,方便进行后续的分布求导/链式求导。

      例如:在导数中,对于一个复合函数h( g( f(x))),我们需要进行链式求导,即h( g( f(x))) = f’ * g’ * h’

    • 推理时:直接调用正向传播即可,不需要构建计算图

  • 反向传播的定义:本质是计算每个参数的梯度,是通过损失函数发起的

  • 模型的作用:只负责前向传播 forward,不负责后向传播 backward

训练流程

  1. 从训练集中,取一批 batch 样本(x, y)
  2. 把样本特征 X 送入模型 model,得到预测结果 y_pred
  3. 计算损失函数 loss = f(y_pred, y) ,计算当前的误差 loss
  4. 通过loss , 反向传播,计算每个参数(w, b)的梯度
  5. 利用优化器 optimizer ,通过梯度下降法,更新参数
  6. 利用优化器 optimizer 清空参数的梯度
  7. 重复1-6 直至迭代结束(各项指标满足要求或是误差很小)

预测流程

  1. 拿到待测样本 X(推理时,没有标签,只有特征)
  2. 把样本特征 X 送入模型 model ,得到预测结果 y_pred
  3. 根据 y_pred 解析并返回预测结果即可

深度学习项目流程

通过上述内容梳理,我们已经了解深度学习的一个基本流程,包括:定义模型、训练、预测。

但是在实际工程使用中,由于训练数据比较庞大,所以我们还需要一些额外的步骤,例如:增加批量化打包流程。

为了更好地理解深度学习的整体流程,我们仍然使用机器学习中使用的《波士顿房价预测》案例,来看一下深度学习下应该如何实现。

批量化打包数据

背景

在实际的工程中,由于深度学习是要进行大数据量的训练,所以我们需要基于以下原因进行批量化打包数据。

  • 提高训练效率:通过批量化处理数据,可以充分利用GPU的并行计算能力,加快模型训练速度。
  • 稳定模型训练:批量化处理可以降低训练过程中的方差,使模型更加稳定。
  • 减少内存消耗:批量化处理可以减少在每个迭代中需要存储的数据量,节省内存消耗。
原理
  • 使用生成器来打包数据

    生成器记录了一个规则,每次调用生成器就会返回一个批次数据。

实现
  1. 先自定义dataset
  2. 再定义dataloader
from torch.utils.data import DataLoader, TensorDataset
# 批量化打包数据示例代码
# 创建数据集和数据加载器
dataset = TensorDataset(x_tensor, y_tensor)
data_loader = DataLoader(dataset, batch_size=16, shuffle=True)

构建模型

定义

在深度学习中构建模型是指设计神经网络结构,确定网络的层数、每层的神经元数量、激活函数等参数,以实现特定的学习任务。

常见方式
  • Sequential模型:Sequential模型是一种简单的线性堆叠模型,层按顺序依次堆叠在一起,适用于顺序处理的神经网络结构。
  • Class子类化模型:通过继承框架提供的模型基类,用户可以自定义模型的结构和计算逻辑,实现更加灵活和定制化的模型构建。

除上述方式之外,还有迁移学习模型组合模型集成自动机器学习(AutoML)、**超网络(Hypernetwork)**等方式,由于不是本章内容重点,暂不展开。

筹备训练

定义损失函数
  • 目的:损失函数用于衡量模型预测结果与真实标签之间的差异,是优化算法的目标函数,帮助模型学习正确的参数。
常见损失函数
  • 均方误差损失(Mean Squared Error, MSE)
  • 交叉熵损失(Cross Entropy Loss)
定义优化器
  • 目的:优化器用于更新模型参数,通过最小化损失函数来提高模型性能,调整模型参数使得损失函数达到最小值。
常见优化算法
  • 随机梯度下降(SGD)
  • Adam
  • Adagrad等
定义训练次数(Epochs)
  • 定义:训练次数指的是将整个训练数据集在模型上反复训练的次数,每次完整地遍历整个数据集称为一个训练周期(Epoch)。

  • 作用:通过增加训练次数,模型可以更好地学习数据集中的模式和特征,提高模型的泛化能力,减少过拟合的风险。

定义学习率(Learning Rate)
  • 定义:学习率是优化算法中的一个重要超参数,控制模型参数在每次迭代中更新的步长大小,即参数沿着梯度方向更新的幅度。
  • 目的:学习率的选择影响模型训练的速度和性能,合适的学习率能够使模型更快地收敛到最优解,而过大或过小的学习率可能导致训练不稳定或陷入局部最优解。

训练模型

  • 训练过程中需要监控模型指标,如:准确率、损失值等

  • 训练过程中需要保存模型参数,方便后续推理

  • 避免过拟合

推理模型

训练好模型之后,直接使用模型进行推理即可。

回归问题:深度学习实现房价预测案例

1. 数据预处理

1.1 数据读取
file_name = './housing.data'

# 原始数据读取
X = []
y = []
with open(file=file_name, mode='r', encoding='utf8') as f:
#     f.readline()
    for  line in f:
        line = line.strip()
        if line:
            sample = [float(ele) for ele in line.split(" ") if ele]
            X.append(sample[:-1])
            y.append(sample[-1])
        
1.2 数据切分
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, 
                                                    test_size=0.2,
                                                    random_state=0)
1.3 数据预处理(规范化)
# 规范化
import numpy as np

# 转numpy数组
X_train = np.array(X_train)
X_test = np.array(X_test)

# 提取参数
_mean = X_train.mean(axis=0)
_std = X_train.std(axis=0) + 1e-9  # 为了避免除零,此处加上一个非常小的数

# 执行规范化处理
X_train = (X_train - _mean) / _std
X_test = (X_test - _mean) / _std

2. 批量化打包数据

通过定义一个继承Dataset的数据集类,方便数据的常见操作,如:len()、index()等。

import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader


# 1. 继承Dataset 自定义一个数据集类
class HouseDataset(Dataset):
    """
        自定义一个房价数据集
    
    """
    def __init__(self, X, y):
        """
            接受参数,定义静态属性
        """
        self.X = X
        self.y = y
        
    
    def __len__(self):
        """
            返回数据集样本的个数
        """
        return len(self.X)
    
    
    def __getitem__(self, idx):
        """
            通过索引,读取第idx个样本
        """
        x = self.X[idx]
        y = self.y[idx]
        
        # 转张量
        x = torch.tensor(data=x, dtype=torch.float32)
        y = torch.tensor(data=[y], dtype=torch.float32)
        return x, y

此处__len__和__getitem__方法是Python的魔法方法,他们是回调(callback)函数,不需要用户自己调用而由系统调用。即:

  • 告诉系统我定义的数据集在取长度按index取元素调用哪个方法;
  • 当系统触发这两种情况(取长度按index取元素)时,会自动调用类里的__len__和__getitem__方法。
# 训练集加载器
house_train_dataset = HouseDataset(X=X_train, y=y_train)
house_train_dataloader = DataLoader(dataset=house_train_dataset, 
                                    batch_size=12,
                                    shuffle=True)

# 测试集加载器
house_test_dataset = HouseDataset(X=X_test, y=y_test)
house_test_dataloader = DataLoader(dataset=house_test_dataset, 
                                    batch_size=32,
                                    shuffle=True)

通过下面的测试代码,可以查看上述训练集和测试集的数据形状

# 测试代码
for X, y in house_train_dataset:
    print(X)
    print(X.shape)
    print(y)
    print(y.shape)
    break

运行结果:

3. 模型搭建

模型的构建方法有以下三种写法,一般情况下,我们使用第三种class的方法,这种方法可以自定义模型的结构和计算逻辑,实现更加灵活和定制化的模型。

from torch import nn

# # 搭建方法1:
# model = nn.Linear(in_features=13, out_features=1)

# # 搭建方法2:
# model = nn.Sequential(
#     nn.Linear(in_features=13, out_features=1)
# )

# 搭建方法3:
class Model(nn.Module):
    """
        自定义一个类
            - 必须继承 nn.Module
    """
    def __init__(self, n_features=13):
        """
            接收超参
            定义处理的层
        """
        # 先初始化父类
        super(Model, self).__init__()
        
        # 定义一个线性层(做一次矩阵变换)
        self.linear = nn.Linear(in_features=n_features, out_features=1)
        
    def forward(self, x):
        """
            模型前向传播逻辑
        """
        x = self.linear(x)
        return x

实例化模型

model = Model(n_features=13)

通过一下测试代码,可以看到模型的运行结果:

# 测试代码
for X, y in house_train_dataloader:
    y_pred = model(X)
    print(y_pred)
    print(y)
    break

运行结果:

4. 筹备训练

这一步骤,我们将定义模型(实例化上述自定义模型)、定义损失函数、定义优化器、定义训练次数和定义学习率。

# 定义模型
model = Model(n_features=13)

# 定义训练的轮次
epochs = 100

# 定义学习率
learing_rate = 1e-3

# 定义损失函数
loss_fn = nn.MSELoss()

# 定义优化器
optimizer = torch.optim.SGD(params=model.parameters(), 
                            lr=learing_rate)

5. 训练模型

5.1 定义监控指标和方法

在训练的过程中,我们需要对训练过程的重要指标加以监控,以避免训练有问题。

# 定义查看损失函数的方法,用于监控训练过程
def get_loss(dataloader):
    # 模型设置为评估模式
    # (BatchNorm LayNorm Dropout层,在train模式和eval模式下,行为是不一样)
    model.eval()
    
    
    # 收集每个批量的损失
    losses = []
    
    # 构建一个无梯度的环境(底层不会默认自动创建计算图,节约资源)
    with torch.no_grad():
        for X, y in dataloader:
            y_pred = model(X)
            loss = loss_fn(y_pred, y)
            losses.append(loss.item())
    
    # 计算每个批量损失的平均值
    final_loss = sum(losses) / len(losses)
    
    # 保留小数点后5位
    final_loss = round(final_loss, ndigits=5)
    
    return final_loss
5.2 实现训练过程
def train():
    # 记录训练过程
    train_losses = []
    test_losses = []
    
    
    # 每一轮次
    for epoch in range(epochs):
        #模型设为训练模式
        model.train()
        
        # 每一批量
        for X, y in house_train_dataloader:
            # 1. 正向传播
            y_pred = model(X)
            
            # 2. 损失计算
            loss = loss_fn(y_pred, y)
            
            # 3. 反向传播
            loss.backward()
            
            # 4. 优化一步
            optimizer.step()
            
            # 5. 清空梯度
            optimizer.zero_grad()
            
        # 计算模型当前的损失情况
        train_loss = get_loss(dataloader=house_train_dataloader)
        test_loss = get_loss(dataloader=house_test_dataloader)
        
        train_losses.append(train_loss)
        test_losses.append(test_loss)
        
        print(f"当前是第{epoch+1}轮,训练集损失为:{train_loss}, 测试集损失为:{test_loss}")
        
    return train_losses, test_losses
5.3 开始训练

至此,我们已经完成整体训练前的重要步骤实现,接下来就可以:训练,启动!

train_losses, test_losses = train()

运行结果:

5.4 图形化监控数据

为了方便查看训练过程变化情况,可以使用matplotlib绘制损失函数的变化曲线。

 from matplotlib import pyplot as plt

plt.plot(train_losses, c="blue", label="train_loss")
plt.plot(test_losses, c="red", label="test_loss")
plt.title("The Losses")
plt.xlabel(xlabel="epoches")
plt.ylabel(ylabel="loss")
plt.legend()

运行结果:

由上图可以看到

  • 在一开始的训练中,损失值快速下降;当训练次数到40次左右后,损失值已经下降不明显。

我们可以通过加入激活函数,引入非线性因素来优化模型。

5.5 激活函数
  • 定义:激活函数是神经网络中的一种非线性函数,通常应用在神经元的输出上,将输入信号转换为输出信号。激活函数引入了非线性因素,使神经网络可以学习和表达复杂的非线性关系。

    举个例子:

    • 想象一下,神经网络就像是一个复杂的拼图游戏,每个神经元就像是拼图中的一个小块。当我们只使用线性函数(比如直线)作为激活函数时,就好比每个小块都是直线,无法拼出复杂的图案,只能表达简单的线性关系。

    • 但是,当我们引入非线性的激活函数时,就好比在每个小块上加入了各种形状和曲线,使得每个小块可以表达更加复杂的形状和关系。这样,当我们把许多这样的小块(神经元)组合在一起时,就可以拼出更加复杂和多样的图案(非线性关系),从而让神经网络能够学习和表达更加复杂的模式和特征。

    • 因此,激活函数的作用就是为神经网络引入了这种非线性因素,使得神经网络可以更好地学习和表达复杂的非线性关系,就像在拼图游戏中加入了各种形状和曲线,让我们能够拼出更加丰富多彩的图案一样。

常见激活函数有:Sigmoid函数、Tanh函数、ReLU函数、Softmax函数,相关内容在补充知识段落展开。

使用方法

在自定义模型类的forward函数中,增加

class Model(nn.Module):
    """
        自定义一个类
            - 必须继承 nn.Module
    """
    def __init__(self, n_features=13):
        """
            接收超参
            定义处理的层
        """
        # 先初始化父类
        super(Model, self).__init__()
        
        # 定义一个线性层(做一次矩阵变换)
        self.linear = nn.Linear(in_features=n_features, out_features=1)
        
    def forward(self, x):
        """
            模型前向传播逻辑
        """
        x = self.linear(x)
        x = nn.ReLU()(x)  # 添加ReLU激活函数
        return x

运行结果:

对比加入激活函数前后的图形,其训练集的损失仍然在19左右,只是下降过程不如之前那么快了。

5.6 多层感知机
定义

由于无法模拟诸如异或以及其他复杂函数的功能,使得单层感知机的应用较为单一。一个简单的想法是,如果能在感知机模型中增加若干隐藏层,增强神经网络的非线性表达能力,就会让神经网络具有更强拟合能力。

大脑是一个多层感知机,每一层都在学习不同级别的特征。

  • 输入层:输入层就像你的眼睛,它接收到动物的各种特征信息,比如颜色、大小等。
  • 隐藏层:隐藏层就像你的大脑皮层,它处理输入的特征信息,并尝试从中提取出更加抽象和复杂的特征,比如动物的轮廓、纹理等。
  • 输出层:输出层就像你的嘴巴,它根据隐藏层提取的特征信息做出判断,比如判断输入的动物是狗还是猫。

通过多次学习和训练,你的大脑(多层感知机)会逐渐调整隐藏层中的神经元(神经元就像大脑中的神经元)的连接权重,从而更好地识别不同类型的动物。

实现方法:

修改自定义模型的初始化方法,加入一个新的线性层

class Model(nn.Module):
    """
        自定义一个类
            - 必须继承 nn.Module
    """
    def __init__(self, n_features=13):
        """
            接收超参
            定义处理的层
        """
        # 先初始化父类
        super(Model, self).__init__()
        
        # 定义两个线性层     
        self.linear1 = nn.Linear(in_features=n_features, out_features=8)
        self.linear2 = nn.Linear(in_features=8, out_features=1)

    def forward(self, x):
        """
            模型前向传播逻辑
        """
        x = self.linear1(x)
        x = torch.relu(x)  # 添加ReLU激活函数
        x = self.linear2(x)

        return x

重新执行训练过程并绘制损失值图形:

由上图可以看到,多层感知机+引入激活函数,损失值已经降到8左右;对比之前未优化的模型,模型的损失值变小,预测准确性得到提升。

深度学习 vs 机器学习

至此,我们借助房价预测的示例,已经完整地实现了深度学习的整体流程;接下来,我们对比一下深度学习和机器学习,在同一问题:房价预测问题上的结果。

from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt


file_name = './housing.data'

# 原始数据读取
X = []
y = []
with open(file=file_name, mode='r', encoding='utf8') as f:
#     f.readline()
    for  line in f:
        line = line.strip()
        if line:
            sample = [float(ele) for ele in line.split(" ") if ele]
            X.append(sample[:-1])
            y.append(sample[-1])
        
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, 
                                                    test_size=0.2,
                                                    random_state=0)
        

# 规范化
import numpy as np

# 转numpy数组
X_train = np.array(X_train)
X_test = np.array(X_test)

# 提取参数
_mean = X_train.mean(axis=0)
_std = X_train.std(axis=0) + 1e-9

# 执行规范化处理
X_train = (X_train - _mean) / _std
X_test = (X_test - _mean) / _std    
    

# 决策树
dt_model = DecisionTreeRegressor()
dt_model.fit(X_train, y_train)
dt_pred = dt_model.predict(X_test)
dt_loss = mean_squared_error(y_test, dt_pred)

# KNN
knn_model = KNeighborsRegressor()
knn_model.fit(X_train, y_train)
knn_pred = knn_model.predict(X_test)
knn_loss = mean_squared_error(y_test, knn_pred)

# 支持向量机
svm_model = SVR()
svm_model.fit(X_train, y_train)
svm_pred = svm_model.predict(X_test)
svm_loss = mean_squared_error(y_test, svm_pred)

# 随机森林
rf_model = RandomForestRegressor()
rf_model.fit(X_train, y_train)
rf_pred = rf_model.predict(X_test)
rf_loss = mean_squared_error(y_test, rf_pred)

models = ['Decision Tree', 'KNN', 'SVM', 'Random Forest']
loss_values = [dt_loss, knn_loss, svm_loss, rf_loss]

plt.figure(figsize=(10, 6))
bars = plt.bar(models, loss_values, color='skyblue')
plt.xlabel('Models')
plt.ylabel('Mean Squared Error')
plt.title('Comparison of Mean Squared Error for Different Models')

# 添加数据标签
for bar, loss in zip(bars, loss_values):
    plt.text(bar.get_x() + bar.get_width() / 2 - 0.1, bar.get_height() + 0.001, f'{loss:.4f}', ha='center', color='black', fontsize=10)

plt.show()

运行结果:

通过对比机器学习和深度学习的平均平方偏差(MSE),深度学习是明显优于机器学习的。

分类问题:深度学习实现鸢尾花分类案例

上述案例中,我们以房价预测为例,使用深度学习实现了线性回归的训练和预测。接下来,我们将以《鸢尾花分类》为例,学习了解深度学习如何实现分类问题。

流程回顾与对比

深度学习实现分类问题与深度学习实现回归问题流程基本一致,对比不同点如下:

流程步骤回归问题分类问题说明
1.数据预处理\\
1.1 数据读取读取数据源不同
1.2数据切分相同
1.3数据预处理相同
2. 批量化数据打包⭕️标签数据类型不同:
1.回归问题标签数据类型为torch.float32
2.分类问题需要将标签y定义类型改为torch.long
3. 模型搭建⭕️超参定义不同:
1.回归问题预测结果是1个,out_features=1
2.分类问题预测结果有N类,out_features=N
4. 筹备训练⭕️损失不同:
1.回归问题使用的是MSE
2.分类问题使用的是交叉熵
5.训练模型\\
5.1定义监控指标和方法⭕️监控指标不同:
1.回归问题监控MSE
2.分类问题监控准确率
5.2实现训练过程相同
5.3开始训练相同
5.4图形化监控数据相同
5.5激活函数相同

代码实现

import numpy as np
import torch
from torch import nn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt


# 1. 继承Dataset 自定义一个数据集类
class IrisDataset(Dataset):
    """
        自定义一个鸢尾花数据集
    
    """
    def __init__(self, X, y):
        """
            接受参数,定义静态属性
        """
        self.X = X
        self.y = y
        
    
    def __len__(self):
        """
            返回数据集样本的个数
        """
        return len(self.X)
    
    
    def __getitem__(self, idx):
        """
            通过索引,读取第idx个样本
        """
        x = self.X[idx]
        y = self.y[idx]
        
        # 转张量
        x = torch.tensor(data=x, dtype=torch.float32)
        
        # 索引号,long类型
        y = torch.tensor(data=y, dtype=torch.long)
        return x, y

    
# 搭建方法3:
class Model(nn.Module):
    """
        自定义一个类
            - 必须继承 nn.Module
    """
    def __init__(self, n_features=4, n_classes=3):
        """
            接收超参
            定义处理的层
        """
        # 先初始化父类
        super(Model, self).__init__()
        
        # 定义一个线性层(做一次矩阵变换)
        self.linear = nn.Linear(in_features=n_features, out_features=n_classes)
        
    def forward(self, x):
        """
            模型前向传播逻辑
        """
        x = self.linear(x)
        return x

    
def get_acc(dataloader):
    # 模型设置为评估模式
    # (BatchNorm LayNorm Dropout层,在train模式和eval模式下,行为是不一样)
    model.eval()
    
    
    # 收集每个批量的损失
    accs = []
    
    # 构建一个无梯度的环境(底层不会默认自动创建计算图,节约资源)
    with torch.no_grad():
        for X, y in dataloader:
            y_pred = model(X)
            y_pred = y_pred.argmax(dim=-1)
            acc = (y_pred == y).to(dtype=torch.float32).mean().item()
            accs.append(acc)
    
    # 计算每个批量损失的平均值
    final_acc = sum(accs) / len(accs)
    
    # 保留小数点后5位
    final_acc = round(final_acc, ndigits=5)
    
    return final_acc


def train():
    # 记录训练过程
    train_accs = []
    test_accs = []
    
    
    # 每一轮次
    for epoch in range(epochs):
        #模型设为训练模式
        model.train()
        
        # 每一批量
        for X, y in iris_train_dataloader:
            # 1. 正向传播
            y_pred = model(X)
            
            # 2. 损失计算
            loss = loss_fn(y_pred, y)
            
            # 3. 反向传播
            loss.backward()
            
            # 4. 优化一步
            optimizer.step()
            
            # 5. 清空梯度
            optimizer.zero_grad()
            
        # 计算模型当前的损失情况
        train_acc= get_acc(dataloader=iris_train_dataloader)
        test_acc = get_acc(dataloader=iris_test_dataloader)
        
        train_accs.append(train_acc)
        test_accs.append(test_acc)
        
        print(f"当前是第{epoch+1}轮,训练集准确率为:{train_acc}, 测试集准确率为:{test_acc}")
        
    return train_accs, test_accs

    
X,y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, 
                                                    test_size=0.2,
                                                    random_state=0)

# 转numpy数组
X_train = np.array(X_train)
X_test = np.array(X_test)

# 提取参数
_mean = X_train.mean(axis=0)
_std = X_train.std(axis=0) + 1e-9

# 执行规范化处理
X_train = (X_train - _mean) / _std
X_test = (X_test - _mean) / _std


# 训练集加载器
iris_train_dataset = IrisDataset(X=X_train, y=y_train)
iris_train_dataloader = DataLoader(dataset=iris_train_dataset, 
                                    batch_size=4,
                                    shuffle=True)

# 测试集加载器
iris_test_dataset = IrisDataset(X=X_test, y=y_test)
iris_test_dataloader = DataLoader(dataset=iris_test_dataset, 
                                    batch_size=8,
                                    shuffle=True)


# 定义模型
model = Model(n_features=4)

# 定义训练的轮次
epochs = 50

# 定义学习率
learing_rate = 1e-3

# 定义损失函数:分类问题使用交叉熵
loss_fn = nn.CrossEntropyLoss()

# 定义优化器
optimizer = torch.optim.SGD(params=model.parameters(), 
                            lr=learing_rate)


train_accs, test_accs = train()


plt.plot(train_accs, c="blue", label="train_acc")
plt.plot(test_accs, c="red", label="test_acc")
plt.title("The Accs")
plt.xlabel(xlabel="epoches")
plt.ylabel(ylabel="acc")
plt.legend()

运行结果:

补充知识

概率模拟

由于分类问题,模型是不会直接输出预测类别,而是输出每个类别的数字(或者叫权重),此时我们需要通过模拟概率将每个类别的数字转换为[0, 1]之间的概率。

常见方法
  • 二分类概率模拟:Sigmoid函数 σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1,取值范围在(0, 1)。
  def sigmod(x):
      """
          sigmoid
              - (0, 1) 
              - 单调递增函数
              - x为0时,模拟概率为0.5
              - x < 0时,模拟概率<0.5
              - x > 0时,模拟概率>0.5
      """
      return 1 / (1 + np.exp(-x))
  
  x = np.linspace(start=-5, stop=5, num=30)
  
  plt.plot(x, sigmod(x))
  plt.grid()

  • 多分类概率模拟:Softmax函数
  import numpy as np
  
  def softmax(logits):
      """
          softmax:
              - 原来比较大的数,模拟概率也比较大
      """
      
      # 转化为np数组
      logits = np.array(logits)
      # 转化为正数
      logits = np.exp(logits)
      # 模拟概率
      return logits /logits.sum()
  
  # 模型输出的都是原始数据
  logits = [0.6 , -3.6, 18.9 ]
  
  logtis = np.array(logits)
  
  softmax(logits)

运行结果:

one-hot编码

在《【课程总结】Day6(上):机器学习项目实战–外卖点评情感分析预测》中,我们曾接触过one-hot编码。本次我们再做下回顾:

  • 这是一种状态编码,适合于离散量内涵

  • 特征编码时:

    以汽车的行驶状态举例:

    • 三个状态:左转0,右转1,直行2
    • 左转:[1, 0, 0]
    • 右转:[0, 1, 0]
    • 直行:[0, 0, 1]
  • 标签编码时:

    以鸢尾花类别举例:

    • 三种花:第一种0,第二种1,第三种2
    • 第一种:[1, 0, 0]
    • 第二种:[0, 1, 0]
    • 第三种:[0, 0, 1]
  • 特点:

    • 互相垂直的向量,没有鲜艳的远近关系
    • 都是比较长的向量,跟类别数量一致
    • 每个向量只有1位是1,其余都是0(这种状态被称为高度稀疏sparse)
    • 从计算和存储上来说,都比较浪费性能

神经网络在预测多类别分类任务时:n_classes个类别的预测问题,模型会输出n_classes个概率。

以鸢尾花为例,神经网络不会直接输出预测的结果是哪个花的类别,而是给出三种花各自的概率,只不过最高概率的哪种花可能就是我们需要的预测结果类别。

交叉熵

作用:从分布的角度来衡量两个概率的远近程度

计算过程:

# 以鸢尾花分类举例:
# 假设我们有一个真实结果y_true,结果是第2类,索引号是1
# 真实结果:y_true: 第2类,索引号为1
# 预测结果1:y_pred1: [12.5, -0.5, 2.7]
# 预测结果2:y_pred2: [-12.5, 6.4, 2.7]

# 第一步:使用one-hot对类别进行编码
y_true = np.array( [0, 1, 0])

# 第二步:进行第一次预测
# 1、对预测结果使用softmax进行概率模拟
y_pred1 = np.array([12.5, -0.5, 2.7])
y_pred1 = softmax(y_pred1) 

# 执行结果:
# y_pred1 
# array([9.99942291e-01, 2.26019897e-06, 5.54483994e-05])

# 2、计算交叉熵损失 y_true @ y_pred1
loss1 = -(0 * np.log(9.99942291e-01) + 1 * np.log(2.26019897e-06) + 0 * np.log(5.54483994e-05))
# 执行结果
# loss1 
# 13.00005770873235

# 第三步:进行第二次预测
y_pred2 = np.array( [-12.5, 6.4, 2.7])
y_pred2 = softmax(y_pred2) 

# 执行结果:
# y_pred2 
# array([6.04265198e-09, 9.75872973e-01, 2.41270213e-02])

loss1 = -(np.log(9.75872973e-01))
# 执行结果:
# loss1
# 0.024422851654124902

通过上面计算可以看到:

  • loss1交叉损失熵最低时,也就是预测结果[-12.5, 6.4, 2.7]与真实结果(第2类)相匹配,由此得到交叉熵越低,预测结果与真实值差异越小。
  • 交叉熵相比MSE,交叉熵计算代码要小。
    • 在计算交叉熵时,计算方法是进行第i个类别one-hot编码与第i个类别概率相乘,最后再相加;
    • 表面上看求了多个熵,实际上只求1个熵(因为one-hot编码为0的位置实际没有参与计算);

激活函数

  • Sigmoid 函数

    • 公式 s i g m o i d ( x ) = 1 1 + e − x {sigmoid}(x) = \frac{1}{1 + e^{-x}} sigmoid(x)=1+ex1

    • 特点:将输入值压缩到 0 到 1 之间,常用于输出层的二分类问题,但容易出现梯度消失问题.

    import numpy as np
    import matplotlib.pyplot as plt
    
    x = np.linspace(-5, 5, 100)
    sigmoid = 1 / (1 + np.exp(-x))
    
    plt.plot(x, sigmoid, label='Sigmoid Function')
    plt.xlabel('x')
    plt.ylabel('sigmoid(x)')
    plt.legend()
    plt.show()

  • Tanh 函数

    • 公式 t a n h ( x ) = e x − e − x e x + e − x {tanh}(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} tanh(x)=ex+exexex

    • 特点:将输入值压缩到 -1 到 1 之间,解决了 Sigmoid 函数的零中心问题,但仍存在梯度消失问题。

    import numpy as np
    import matplotlib.pyplot as plt
    
    # 生成 x 值
    x = np.linspace(-5, 5, 100)
    
    # 计算双曲正切函数的 y 值
    y = np.tanh(x)
    
    # 绘制双曲正切函数图像
    plt.figure(figsize=(8, 6))
    plt.plot(x, y, label='tanh(x)')
    plt.xlabel('x')
    plt.ylabel('tanh(x)')
    plt.title('Plot of Hyperbolic Tangent Function')
    plt.grid(True)
    plt.legend()
    plt.show()

  • ReLU 函数(Rectified Linear Unit)

    • 公式: R e L U ( x ) = max ⁡ ( 0 , x ) {ReLU}(x) = \max(0, x) ReLU(x)=max(0,x)

    • 特点:简单且高效,解决了梯度消失问题,但可能导致神经元死亡问题(输出恒为 0)

    import numpy as np
    import matplotlib.pyplot as plt
    
    # 定义 ReLU 函数
    def relu(x):
        return np.maximum(0, x)
    
    # 生成 x 值
    x = np.linspace(-5, 5, 100)
    
    # 计算 ReLU 函数的 y 值
    y = relu(x)
    
    # 绘制 ReLU 函数图像
    plt.figure(figsize=(8, 6))
    plt.plot(x, y, label='ReLU(x)')
    plt.xlabel('x')
    plt.ylabel('ReLU(x)')
    plt.title('Plot of Rectified Linear Unit (ReLU) Function')
    plt.grid(True)
    plt.legend()
    plt.show()

内容小结

  • 模型训练本质:固定w和b参数的过程

    • 让模型更好→本质上就是让模型的损失值loss变小;
    • 让loss变小→本质上就是求loss函数的最小值;
  • 深度学习的整体项目路程

    • 第一步:读取数据、切分数据、数据规范化
    • 第二步:批量化打包数据
    • 第三步:构建模型
    • 第四步:筹备训练,定义损失函数、定义优化器、定义训练次数、定义学习率
    • 第五步:训练模型,在训练的过程中需要对损失值进行监控
    • 第六步:推理模型,即直接将待预测样本数据代入模型求预测值y_pred即可
  • 第三步构建模型时

    • 一般常用自定义class类的方法,这种方法更加灵活
    • 为了降低模型的损失值,可以采用加入激活函数以及多层感知机的方式
  • 第五步实现训练模型时

    • 基本的五步法:1.正向传播→2.损失计算→3.反向传播→4.优化一步→5.清空梯度
  • 使用深度学习进行分类问题时,流程与回归问题基本一致,不同的地方在于

    • 损失函数计算方法不同:回归问题使用的是MSE,分类问题使用的是交叉熵。
    • 训练过程中监控的指标不同,回归问题监控MSE,分类问题监控的是准确率。
  • 神经网络在处理分类问题时,输出的不是某个类别,而是不同类别的概率。

    • 在输出概率时,需要进行概率模拟
    • 二分类问题概率模拟时,使用Sigmoid函数;多分类概率模拟时,使用的是softmax函数

参考资料:

多层感知机

百度百科:ReLU函数

百度百科:Sigmoid函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/707951.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Postman接口测试工具详解(高清图例)

一、引言 1. 介绍接口测试的重要性 在当今软件开发领域&#xff0c;接口&#xff08;API&#xff09;已成为不同系统、服务或组件之间交互的桥梁。随着微服务架构的普及&#xff0c;接口的重要性日益凸显。然而&#xff0c;接口的复杂性和多样性也带来了诸多挑战&#xff0c;其…

【中间件】Pulsar集群安装

目录 一、Pulsar介绍 1.1 Pulsar基本介绍 1.2 Pulsar架构 Producer & Consumer Apache Zookeeper Pulsar Brokers Apache Bookkeeper 二、Zookeeper集群安装 三、Pulsar集群安装 3.1 bookie与broker配置 3.1.1 修改bookie配置文件 3.1.2 修改broker配置文件 3…

轮到国产游戏统治Steam榜单

6月10日晚8点&#xff0c;《黑神话:悟空》实体版正式开启全款预售,预售开启不到5分钟,所有产品即宣告售罄。 Steam上&#xff0c;《黑神话:悟空》持续占据着热销榜榜首的位置。 但在《黑神话:悟空》傲人的光环下&#xff0c;还有一款国产游戏取得出色的成绩。 6月10日&#…

32T存储删除视频的恢复方法

由于存储技术的发展和普及目前很多行业都开始使用小型存储&#xff0c;NAS可以通过网络进行数据上传和读取&#xff0c;使用极为方便。但是由于NAS设备容量较大且碎片较多&#xff0c;所以此类设备删除或者格式后恢复难度是比较大的&#xff0c;下边我们来分享下32T存储的恢复方…

Android面试题之ActivityManagerService的启动流程

本文首发于公众号“AntDream”&#xff0c;欢迎微信搜索“AntDream”或扫描文章底部二维码关注&#xff0c;和我一起每天进步一点点 SystemServer启动 创建SystemContex 用于加载系统相关的资源&#xff0c;比如theme&#xff0c;android命名空间下的资源等创建引导服务&#…

关于Ubuntu24.04嘉立创EDA无法启动的问题

关于Ubuntu24.04嘉立创EDA无法启动的问题 查看无法启动原因解决办法1解决办法2 查看无法启动原因 在终端使用启动文件命令报错 解决办法1 输入如下命令可以正常启动 ./lceda-pro --no-sandbox 解决办法2 找到desktop文件进行修改 cd /usr/share/applications sudo vim lce…

基于顺序表与链表的顺序查找(顺序表的折半查找)

内容 基于任意一个顺序表、链表&#xff0c;实现顺序查找算法&#xff1b;实现折半查找算法&#xff0c;并思考折半查找算法的适用场景&#xff1b; #代码实现 #include<iostream> #include <stdlib.h> using namespace std; #define MAX 20 #define datatype int…

JS手写题解析

手写Promise class MyPromise {constructor(executor) { // executor执行器this.status pending // 等待状态this.value null // 成功或失败的参数this.fulfilledCallbacks [] // 成功的函数队列this.rejectedCallbacks [] // 失败的函数队列const that thisfunction reso…

PCL 任意二维图像转点云

目录 一、概述二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 给定任意一张图片,通过代码操作将图片转成点云。图像中包含大量可用信息,其中必不可少的信息为像素坐标和像素值,将像…

基于Python+OpenCV的车牌识别停车场管理系统(PyQt界面)【含Python源码 MX_009期】

简介&#xff1a; 基于Python和OpenCV的车牌识别停车场管理系统是一种利用计算机视觉技术来自动识别停车场进出车辆的系统。该系统通过摄像头捕获车辆图像&#xff0c;并使用OpenCV库中的图像处理和模式识别技术来识别图像中的车牌号码。一旦车牌被成功识别&#xff0c;系统就会…

今年的就业环境不容乐观,你想好怎么应对了吗

今年的就业环境不容乐观&#xff0c;你想好怎么应对了吗 毕业生进入职场的历程往往充满挑战和未知&#xff0c;尤其是在当前经济环境下&#xff0c;失业问题愈发凸显。本文通过分享几位年轻人的真实经历&#xff0c;剖析大学生及职场人士面临的困境&#xff0c;并提供应对策略…

字符串及其应用

内容 编写程序实现字符串的基本运算&#xff1a; (1) 求串的长度、两串连接、串比较、子串匹配&#xff1b; (2) 用库函数直接实现上一步的字符申操作 完整代码 #include <iostream> #include <stdio.h> #include<string.h> using namespace std; #define M…

【乐吾乐2D可视化组态编辑器】下载离线部署包

下载离线部署包 乐吾乐2D可视化/大屏可视化支持导出为可直接部署运行的html文件。 乐吾乐2D可视化组态编辑器地址&#xff1a;https://2d.le5le.com/ 1. 从“文件”菜单选择“下载离线部署包” 【提示】离线部署包是需要付费下载&#xff0c;首次体验&#xff0c;可以选择&…

注解 - @ControllerAdvice

注解简介 在今天的每日一注解中&#xff0c;我们将探讨ControllerAdvice注解。ControllerAdvice是Spring框架中的一个注解&#xff0c;用于集中处理应用程序中所有控制器的全局异常处理、数据绑定和数据预处理。 注解定义 ControllerAdvice注解用于定义一个全局的异常处理、数…

SQL优化选对执行计划,查询速度提升1000倍 | OceanBase 应用实践

作者&#xff1a;爱可生数据库高级工程师任仲禹&#xff0c;擅长故障分析和性能优化。 本文通过一个案例&#xff0c;分享使用OceanBase时&#xff0c;SQL走错执行计划&#xff0c;而导致慢SQL的排查方法论。 案例背景 在使用OceanBase 3.2.3 版本的过程中&#xff0c;项目组反…

【Da-SimaRPN】《Distractor-aware Siamese Networks for Visual Object Tracking》

ECCV-2018 中科大 文章目录 1 Background and Motivation2 Related Work3 Advantages / Contributions4 Method4.1 Features and Drawbacks in Traditional Siamese Networks4.2 Distractor-aware Training4.3 Distractor-aware Incremental Learning4.4 DaSiamRPN for Long-t…

【详解Python文件: .py、.ipynb、.pyi、.pyc、​.pyd !】

今天同事给我扔了一个.pyd文件&#xff0c;说让我跑个数据。然后我就傻了。。 不知道多少粉丝小伙伴会run .pyd代码文件&#xff1f;如果你也懵懵的&#xff0c;请继续往下读吧。。 Python文件是存储Python代码或数据的文本文件&#xff0c;通常以.py作为文件扩展名。这些文件…

k8s 自动伸缩机制-------HPA 超详细解读

目录 在K8s中扩缩容分为两种&#xff1a; 前言 弹性伸缩是根据用户的业务需求和策略&#xff0c;自动“调整”其“弹性资源”的管理服务。通过弹性伸缩功能&#xff0c;用户可设置对定时、周期或监控策略&#xff0c;恰到好处地增加或减少“弹性资源”&#xff0c;并完成实例…

单片机课设-基于单片机的电子时钟设计(仿真+代码+报告)

基于单片机的电子时钟设计 前言一、课设任务是什么?二、系统总体方案硬件设计2.1 系统硬件总体设计2.2 键盘电路设计2.3 DS1302实时时钟芯片电路设计2.4 复位电路2.5 LCD电路设计 三、软件设计3.1 主程序流程图3.2 主要程序设计代码3.3 修改时间函数3.4 扫描键盘函数 四、仿真…

基坑监测:关键环节与深入剖析,保障施工安全与质量新标准

在建筑工程中&#xff0c;基坑监测是一项至关重要的工作&#xff0c;它涉及对基坑施工现场的实时监测数据进行分析和评估&#xff0c;以确保基坑施工活动的稳定、安全和高效进行。基坑监测涵盖地质勘探、基坑开挖、加固、支护、周边环境以及工程质量验收等多个环节&#xff0c;…