python数据分析-淘票票电影可视化

一、研究背景和意义

在当今数字化和媒体饱和的时代,电影产业不仅是文化的重要组成部分,也是全球经济的一大推动力。电影不仅能够反映社会现实和文化趋势,还能预示和塑造公众的兴趣与期待。因此,深入分析电影数据集具有重要的实践和理论意义。通过对电影数据进行描述性统计分析,在电影数据集的分析过程中,描述性统计分析提供了一个宏观的视角,揭示了电影行业的基本运行模式和市场表现。进一步地,而在机器学习领域,随机森林模型的应用则开启了预测电影市场行为的新篇章。。。

二、数据集介绍

淘票票平台的电影数据集提供了一个独特的视角,让我们能够深入探究中国电影市场的复杂性与动态变化。这份数据集汇集了从2000年至2020年间上映的250部影片的详尽信息

三、描述性统计分析与可视化

首先导入基本的画图的包

# 导入基本的画图的包
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sns 
import datetime
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文

读取 CSV 文件并且展示数据前五行: 

# 读取 CSV 文件
movies_data = pd.read_csv('movies.csv')
movies_data.head()

数据和完整代码

报告代码数据 

 随后对数据进行描述性统计分析:

统计分析覆盖了五个不同的数值变量:票房(亿)、平均票价、平均人次、年份和月份。对于每个变量,提供了以下统计指标:count:每个变量的观测值数量,此处每个变量均为250个观测值。mean:平均值,反映了中心趋势。

查看数据基础信息:

接下来查看缺失值: 

###数据预处理
#观察缺失值
import missingno as msno
msno.matrix(movies_data)

 

 

从上面可以看出,数据集比较完整,数据没有缺失值。

接下来对数据进行可视化分析部分:

# 散点图:票房与平均票价的关系
sns.scatterplot(data=movies_data, x='平均票价', y='票房(亿)', ax=axes[0, 0])
axes[0, 0].set_title('票房与平均票价的关系')
axes[0, 0].set_xlabel('平均票价')
axes[0, 0].set_ylabel('票房(亿)')

 

在上图所示的票房与平均票价的散点图中,我们可以观察到平均票价与票房之间的一种关联模式:随着平均票价的上升,票房也显示出增长趋势。这样的电影往往伴随着大规模的宣传和营销活动,能够吸引大量观众进电影院,从而推动高票房收入的产生。 

 

在上图展现的年度票房总和的时间序列图中,通过一条清晰的折线,我们能够追踪2000年至2020年20年间电影票房的发展轨迹。这个图形不仅揭示了整体上升的大趋势,而且还描绘出了一些特别的增长时期,如2000年末至2010年期间的快速上升,以及2015年后的另一轮显著增长。 

 

上图是电影平均人次的直方图,上面叠加了一个拟合的概率密度曲线。这个图表显示了电影平均人次的分布情况。直方图显示,电影的平均人次集中在较低的范围内,大多数电影的平均人次在30次以下,呈现出接近正态分布的形态。

 

plt.figure(figsize=(10, 6))
movies_per_year = movies_df['年份'].value_counts()
plt.pie(movies_per_year, labels=movies_per_year.index, autopct='%1.1f%%', startangle=90)
plt.title('每年电影数量分布')
plt.show()

 

柱状图上的误差线提供了关于每月平均票价变异性的信息。从图中可以观察到,虽然各月份的平均票价相差不大,但仍有一定的波动,这可能受到季节性因素和不同月份电影类型及数量的影响。 

接下来使用相关性热力图看一下个特征之间的关系:

 

这显示了一个相关性热力图,它展示了电影数据集中几个数值变量之间的相关性系数。热力图的颜色变化从红色到蓝色代表了相关性系数的范围,红色表示正相关,蓝色表示负相关,颜色的饱和度表示相关性的强度。

四、时间序列方法研究和分析

 接下来使用使用时间序列方法中的移动平均来平滑数据,这可以帮助我们更好地理解票房随时间的整体趋势。

# 计算年度票房的移动平均值
movies_data['年份'] = movies_data.index.year
yearly_box_office = movies_data.groupby('年份')['票房(亿)'].sum()
rolling_mean = yearly_box_office.rolling(window=3).mean()

上图显示了两条趋势线:一条表示原始数据的年度票房总和,另一条表示通过移动平均方法平滑后的数据。从图中可以看出,原始数据的趋势线(实线)在某些年份出现了尖峰或下降,这可能是由于特定的市场事件、重大电影发布或外部经济因素造成的。。。。

移动平均是一种常用的数据分析技术,特别是在时间序列数据分析中,它可以帮助分析师识别和跟踪数据的长期趋势和周期性模式。通过对原始数据应用移动平均,我们可以更清晰地看到总体的增长趋势,以及潜在的上升或下降周期。这种分析方法对于市场分析师、投资者和决策者来说是非常有价值的,因为它提供了对未来市场动态的洞见,有助于做出更加信息化的决策。 

五、随机森林模型预测与分析

接下来使用随机森林模型来预测,其中票房为响应变量,其他为特征,训练集测试集划分比例为7:3,具体代码如下:

# 创建并训练随机森林回归模型
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = rf_model.predict(X_test)

# 计算模型性能指标
mse_rf = mean_squared_error(y_test, y_pred)
r2_rf = r2_score(y_test, y_pred)

# 可视化预测结果与实际值
plt.figure(figsize=(12, 6))
plt.scatter(y_test, y_pred, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2) # 对角线
plt.xlabel('实际票房')
plt.ylabel('预测票房')
plt.title('随机森林回归模型的预测效果')
plt.show()

该散点图显示了预测值和实际值之间的关系,并配有一条拟合线。这条拟合线表示的是变量之间的线性关系,而散点图上的点代表观测数据。

 在这个图表中,R²分数是0.997,这意味着模型的预测非常准确,而MSE的值很低(0.169),表明模型的预测误差较小。这样的结果通常表明模型在统计上是成功的,能够很好地捕捉到数据中的模式和关系。

六、文本分析与可视化

接下来针对标题长度分布做一个文本分析:

从这个柱状图中,我们可以看到大多数电影的标题长度集中在较短的区间内,尤其是在4到6个字符之间的标题数量最多,这可能表明在电影标题的设计上倾向于简洁明了,以便观众容易记忆和识别。 

七、总结和展望

总结以上分析,我们可以看到数据科学在电影产业中的应用是多方面的,从基础的统计分析到复杂的机器学习模型,都能提供有价值的见解。描述性统计帮助我们理解了市场的基本面貌,时间序列分析揭示了电影票房的动态趋势,随机森林模型使我们能够预测并理解电影成功的驱动因素,而文本分析提供了对市场营销策略的深入理解。

展望未来,随着数据科学技术的进步和数据收集能力的提高,我们可以预期在电影产业中的数据分析会更加精细化和个性化。。。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/707277.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于某评论的TF-IDF下的LDA主题模型分析

完整代码: import numpy as np import re import pandas as pd import jieba from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import LatentDirichletAllocationdf1 pd.read_csv(小红书评论.csv) # 读取同目录下csv文件…

最短路径Bellman-Ford算法和SPFA算法详解

目录 Bellman-Ford算法介绍 Bellman-Ford算法证明 Bellman-Ford算法实现 SPFA算法详解 Bellman-Ford算法介绍 Dijkstra算法可以很好的解决无负权图的最短路径问题,但是如果出现了负权边,Dijkstra算法就会失效。为了更好地求解有负权边的最短路径问…

redis 06 集群

1.节点,这里是把节点加到集群中的操作,跟主从结构不同 这里是在服务端使用命令: 例子: 2.启动节点 节点服务器 首先,先是服务器节点自身有一个属性来判断是不是可以使用节点功能 一般加入集群中的节点还是用r…

常见的 EVM 版本以及它们的区别

EVM(以太坊虚拟机)版本的演进是为了引入新的特性和改进以太坊平台的安全性、效率和功能性。每个版本通常伴随着以太坊网络的硬分叉,这是以太坊协议的重大升级。以下是一些常见的EVM版本及其主要区别: Homestead (2016年3月)&…

用h()给渲染的组件传递参数

项目的一个下载悬浮提示框是使用antv的notification组件结合自定义的进度条实现的。 效果: 由于进度条需要完整显示,所以取消了组件自带的自动关闭效果。 查看官方文档,可以通过notification.close(key)来关闭提示框窗口。其中key是notifica…

【odoo】odoo常用的ORM方法

概要 在Odoo中,ORM(对象关系映射,Object-Relational Mapping)方法是一种将Python对象映射到数据库表的方法。Odoo的ORM系统使开发者能够使用高级的Python代码而不是复杂的SQL语句来操作数据库。Odoo的ORM方法主要用于创建、读取、…

驱动开发(二):创建字符设备驱动

往期文章: 驱动开发(一):驱动代码的基本框架 驱动开发(二):创建字符设备驱动 ←本文 目录 字符驱动设备的作用 函数 字符驱动设备注册和注销 注册 注销 自动创建设备节点 创建class类…

LogicFlow 学习笔记—7. LogicFlow 基础 背景 Background

背景 Background 提供可以修改画布背景的方法,包括背景颜色或背景图片,背景层位于画布的最底层。 info 创建画布时,通过 background 选项来设置画布的背景层样式,支持透传任何样式属性到背景层。默认值为 false 表示没有背景。 …

DETR实现目标检测(二)-利用自己训练的模型进行预测

1、图片预测(CPU) 关于DETR模型训练自己的数据集参考上篇文章: DETR实现目标检测(一)-训练自己的数据集-CSDN博客 训练完成后的模型文件保存位置如下: 准备好要预测的图片: 然后直接调用模型进行预测,并设…

图像生成新篇章:Stable Diffusion 3 Medium开源评析

摘要 在数字艺术与人工智能的交汇点上,Stable Diffusion 3(SD3)的开源无疑是一场技术革新的盛宴。就在3月份,我撰写了一篇博文,深入探讨了SD3的技术报告内容与介绍,文章发表在CSDN博客上,https:…

docker拉取镜像失败超时的解决方法,docker配置国内镜像源

更换国内源 创建或修改 /etc/docker/daemon.json 文件 安装docker后一般只有 /etc/docker 这个目录 下面并没有 daemon.json 文件 我们直接创建 : vim /etc/docker/daemon.json {"registry-mirrors" : ["https://registry.docker-cn.com"…

leetcode240 搜索二维矩阵II

题目 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性: 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 示例 输入:matrix [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18…

热门开源项目OpenHarmony

目录 1.概述 1.1.开源项目的意义 1.2.开源项目对软件行业的促进作用 1.3.小结 2.OpenHarmony 2.1.技术架构 2.2.分布式软总线 2.2.1.架构 2.2.2.代码介绍 2.2.2.1.代码目录 2.2.2.2.说明 2.2.2.3.发现组网和传输 2.2.2.3.1.发现 2.2.2.3.2.组网 2.2.2.3.3.传输…

H5漂流瓶交友源码|社交漂流瓶H5源码 附安装教程

H5漂流瓶交友源码|社交漂流瓶H5源码 附安装教程 搭建教程 环境:Nginx 1.20.1-MySQL 5.6.50-PHP-7.3 上传源码至网站根目录,创建并导入数据库 数据库信息修改:/config/database.php 网站运行目录/public 配置文件加入(从24行…

2. 音视频H264

视频软件基本流程 1.什么是H264 H.264是由ITU-T视频编码专家组(VCEG)和ISO/IEC动态图像专家组(MPEG)联合组成的联合视频组(JVT,Joint Video Team)提出的高度压缩数字视频编解码器标准 H265又名高…

数据预处理之基于预测的(线性,ARIMA)异常值检测#matlab

基于密度的LOF异常值检测可见上篇文章。以下介绍基于预测的异常值检测: 1.基于预测的异常值检测方法 基于预测的异常值检测方法,特别是结合线性回归和ARIMA(自回归积分滑动平均模型)模型,是数据分析中常用的技术。这…

期末复习5---PTA

以下是提交正确的代码&#xff1a; int max_len( char *s[], int n ) {int i;int max0;for(i1;i<n;i){if(strlen(s[i])>strlen(s[max]))maxi;}return strlen(s[max]); } 以下是我自己写的代码&#xff1a; 出现的问题是 &#xff1a;括号加的不对&#xff0c;需要细心…

Vue31-生命周期的简介

一、需求&#xff1a;文字的透明度递减 示例&#xff1a; 对象的简写形式 new vue({ key:value, key:value, 。。。。。。 }) 二、代码的实现 注意&#xff1a;JS不擅长小数的计算&#xff01;&#xff01;&#xff01; 此写法不好&#xff01;&#xff01;&#xff01;追求…

【抽代复习笔记】19-群(十三):奇偶置换、循环置换的几个定理及例题

定义&#xff1a; ①在Sn中&#xff0c;能够表示为奇数多个对换乘积的置换称为“奇置换”&#xff0c;能够表示为偶数多个对换乘积的置换称为“偶置换”&#xff1b; ②所有偶置换的集合记为An。 例1&#xff1a;&#xff08;1&#xff09;计算S1和S2中奇、偶置换的数目&…

QT基础-简介,安装(6.7.1编译)

目录 QT简介 一.QT编译 国内镜像网站 1. For windows a.下载:qt-everywhere-src-6.7.1.zip b.下载Cmake c.下载python d.查看readme.md e. x64 native Tools cd 到 源码目录 f.输入 g. 然后输入 ​编辑 h.最后输入 1.2. qt-creator 1.3. 配置编译 2. For Ubu…