流媒体学习之路(WebRTC)——音频NackTracker优化思路(8)

流媒体学习之路(WebRTC)——音频NackTracker优化思路(8)

——
我正在的github给大家开发一个用于做实验的项目 —— github.com/qw225967/Bifrost

目标:可以让大家熟悉各类Qos能力、带宽估计能力,提供每个环节关键参数调节接口并实现一个json全配置,提供全面的可视化算法观察能力。

欢迎大家使用
——

文章目录

  • 流媒体学习之路(WebRTC)——音频NackTracker优化思路(8)
  • 一、NackTracker逻辑分析
    • 1.1 设计思路
    • 1.2 代码
  • 二、优化思路
  • 三、测试
  • 四、总结


  在讲具体内容之前插一句嘴,从GCC分析(3)开始,我们将针对GCC的实现细节去分析它设计的原理,让我们理解这些类存在的意义,不再带大家去串具体的流程了。

一、NackTracker逻辑分析

1.1 设计思路

  NackTracker是WebRTC根据NetEq逻辑设计的Nack逻辑,相比于视频的重传,音频考虑的问题相对更多一些。(本文的音频NackTracker逻辑来源于WebRTC105版本)

//
// The NackTracker class keeps track of the lost packets, an estimate of
// time-to-play for each packet is also given.
//
// Every time a packet is pushed into NetEq, LastReceivedPacket() has to be
// called to update the NACK list.
//
// Every time 10ms audio is pulled from NetEq LastDecodedPacket() should be
// called, and time-to-play is updated at that moment.
//
// If packet N is received, any packet prior to N which has not arrived is
// considered lost, and should be labeled as "missing" (the size of
// the list might be limited and older packet eliminated from the list).
//
// The NackTracker class has to know about the sample rate of the packets to
// compute time-to-play. So sample rate should be set as soon as the first
// packet is received. If there is a change in the receive codec (sender changes
// codec) then NackTracker should be reset. This is because NetEQ would flush
// its buffer and re-transmission is meaning less for old packet. Therefore, in
// that case, after reset the sampling rate has to be updated.
//
// Thread Safety
// =============
// Please note that this class in not thread safe. The class must be protected
// if different APIs are called from different threads.
//

  上面是NackTracker注释的设计思路,意思是:
  1.统计丢失的数据包,并给出每个数据包播放的估计时间;
  2.每次数据进入NetEq时,都会调用 LastReceivedPacket() 更新 NackList;
  3.每次从NetEq队列提取10ms的音频,都需要调用LastDecodedPacket(),更新播放时间记录;
  4.如果接收到数据包N,则在N之前尚未到达的任何数据包都被视为丢失,并应标记为“丢失”(列表的大小可能受到限制,旧的数据包将从列表中删除——这里记录的默认值是500)。
  5.NackTracker类必须知道数据包的采样率才能计算播放时间。因此,一旦接收到第一个数据包,就应该设置采样率。如果接收编解码器发生变化(发送方更改编解码器),则应重置NackTracker。这是因为NetEQ会清空其缓冲区,而重新传输对旧数据包来说意义不大。因此,在这种情况下,在重置之后,必须更新采样率。

1.2 代码

void NackTracker::UpdateLastReceivedPacket(uint16_t sequence_number,
                                           uint32_t timestamp) {
  // Just record the value of sequence number and timestamp if this is the
  // first packet.
  // 记录第一个数据包接收信息
  if (!any_rtp_received_) {
    sequence_num_last_received_rtp_ = sequence_number;
    timestamp_last_received_rtp_ = timestamp;
    any_rtp_received_ = true;
    // If no packet is decoded, to have a reasonable estimate of time-to-play
    // use the given values.
    if (!any_rtp_decoded_) {
      sequence_num_last_decoded_rtp_ = sequence_number;
      timestamp_last_decoded_rtp_ = timestamp;
    }
    return;
  }

  // 序号已接到直接返回
  if (sequence_number == sequence_num_last_received_rtp_)
    return;

  // Received RTP should not be in the list.
  nack_list_.erase(sequence_number);

  // If this is an old sequence number, no more action is required, return.
  // 如果是旧数据直接返回
  if (IsNewerSequenceNumber(sequence_num_last_received_rtp_, sequence_number))
    return;

  // 更新丢包率估计
  UpdatePacketLossRate(sequence_number - sequence_num_last_received_rtp_ - 1);

  // 更新nack列表
  UpdateList(sequence_number, timestamp);

  sequence_num_last_received_rtp_ = sequence_number;
  timestamp_last_received_rtp_ = timestamp;
  
  // 尝试清除队列到当前最大限制
  LimitNackListSize();
}

// 这里的逻辑是个指数滤波器
// 指数滤波器是个低通滤波器,主要是削弱高频信号:
// y(k) = a * y(k-1) +  (1-a) * x(k)
// a就是下面的alpha_q30,这个值在:0-1之间,通常是0.8 ~ 0.99,这里配置给出0.996
void NackTracker::UpdatePacketLossRate(int packets_lost) {
  // 计算alpha值,用默认值换算后:1069446856
  const uint64_t alpha_q30 = (1 << 30) * config_.packet_loss_forget_factor;
  // Exponential filter.
  // 进行指数滤波留下丢包的低通值
  packet_loss_rate_ = (alpha_q30 * packet_loss_rate_) >> 30;
  for (int i = 0; i < packets_lost; ++i) {
    packet_loss_rate_ =
        ((alpha_q30 * packet_loss_rate_) >> 30) + ((1 << 30) - alpha_q30);
  }
}

// 这个函数根据最新的包序号更新丢包值
void NackTracker::UpdateList(uint16_t sequence_number_current_received_rtp,
                             uint32_t timestamp_current_received_rtp) {
  // 序号连续直接返回
  if (!IsNewerSequenceNumber(sequence_number_current_received_rtp,
                             sequence_num_last_received_rtp_ + 1)) {
    return;
  }
  RTC_DCHECK(!any_rtp_decoded_ ||
             IsNewerSequenceNumber(sequence_number_current_received_rtp,
                                   sequence_num_last_decoded_rtp_));

  // 更新采样的包周期
  absl::optional<int> samples_per_packet = GetSamplesPerPacket(
      sequence_number_current_received_rtp, timestamp_current_received_rtp);
  if (!samples_per_packet) {
    return;
  }

  // 更新丢包到nacklist
  for (uint16_t n = sequence_num_last_received_rtp_ + 1;
       IsNewerSequenceNumber(sequence_number_current_received_rtp, n); ++n) {
    uint32_t timestamp = EstimateTimestamp(n, *samples_per_packet);
    NackElement nack_element(TimeToPlay(timestamp), timestamp);
    nack_list_.insert(nack_list_.end(), std::make_pair(n, nack_element));
  }
}

// 需要根据采样率估计出每个包的周期
absl::optional<int> NackTracker::GetSamplesPerPacket(
    uint16_t sequence_number_current_received_rtp,
    uint32_t timestamp_current_received_rtp) const {
  uint32_t timestamp_increase =
      timestamp_current_received_rtp - timestamp_last_received_rtp_;
  uint16_t sequence_num_increase =
      sequence_number_current_received_rtp - sequence_num_last_received_rtp_;

  int samples_per_packet = timestamp_increase / sequence_num_increase;
  if (samples_per_packet == 0 ||
      samples_per_packet > kMaxPacketSizeMs * sample_rate_khz_) {
    // Not a valid samples per packet.
    return absl::nullopt;
  }
  return samples_per_packet;
}

// 根据周期计算时间戳
uint32_t NackTracker::EstimateTimestamp(uint16_t sequence_num,
                                        int samples_per_packet) {
  uint16_t sequence_num_diff = sequence_num - sequence_num_last_received_rtp_;
  return sequence_num_diff * samples_per_packet + timestamp_last_received_rtp_;
}

// 根据最大包限制清除包
void NackTracker::LimitNackListSize() {
  uint16_t limit = sequence_num_last_received_rtp_ -
                   static_cast<uint16_t>(max_nack_list_size_) - 1;
  nack_list_.erase(nack_list_.begin(), nack_list_.upper_bound(limit));
}

  上述逻辑中有几个点需要思考一下:
  1.为什么使用指数滤波器对丢包率进行低通滤波?
  2.为什么Nack队列需要记录时间戳信息?

  答:首先,packet_loss_rate_是用于做最大等待时间估计的,这个最大等待时间估计用于判断是否需要请求重传的判断。

// We don't erase elements with time-to-play shorter than round-trip-time.
std::vector<uint16_t> NackTracker::GetNackList(int64_t round_trip_time_ms) {
  RTC_DCHECK_GE(round_trip_time_ms, 0);
  std::vector<uint16_t> sequence_numbers;

  // rtt异常兜底
  if (round_trip_time_ms == 0) {
    if (config_.require_valid_rtt) {
      return sequence_numbers;
    } else {
      round_trip_time_ms = config_.default_rtt_ms;
    }
  }

  // 丢包率异常,大于1直接返回
  if (packet_loss_rate_ >
      static_cast<uint32_t>(config_.max_loss_rate * (1 << 30))) {
    return sequence_numbers;
  }
  // The estimated packet loss is between 0 and 1, so we need to multiply by 100
  // here.
  // 根据丢包率计算最大等待时间
  int max_wait_ms =
      100.0 * config_.ms_per_loss_percent * packet_loss_rate_ / (1 << 30);

  // 重传包放入队列
  for (NackList::const_iterator it = nack_list_.begin(); it != nack_list_.end();
       ++it) {
    // 计算当前时间戳和丢包时间戳的差值
    int64_t time_since_packet_ms =
        (timestamp_last_received_rtp_ - it->second.estimated_timestamp) /
        sample_rate_khz_;

    // 丢包数据播放时间超过rtt || 接到数据的差值 + rtt 小于最大等待时间 则进行重传请求
    if (it->second.time_to_play_ms > round_trip_time_ms ||
        time_since_packet_ms + round_trip_time_ms < max_wait_ms)
      sequence_numbers.push_back(it->first);
  }

  // 配置开启,仅进行单次Nack请求,则清除队列
  if (config_.never_nack_multiple_times) {
    nack_list_.clear();
  }
  return sequence_numbers;
}

  从上述的代码中可以看到,音频的重传限制主要有两个:
  1.播放时间大于rtt——(代表这个重传是有意义的,这个数据请求重传能在一个rtt重传回来则可以赶上播放,不增加延迟);
  2.等待时间+rtt 小于最大等待时间——最大等待时间的计算

// 每次丢包增加等待的时长:ms_per_loss_percent = 20
// 计算alpha衰减因子:packet_loss_forget_factor = 0.996
// 假设有7个丢包,那么根据上述运算逻辑:
  int ms_per_loss_percent = 20;
  uint32_t packet_loss_rate_ = 0;
  double packet_loss_forget_factor = 0.996;

  const uint64_t alpha_q30 = (1 << 30) * packet_loss_forget_factor;
  packet_loss_rate_ = (alpha_q30 * packet_loss_rate_) >> 30;
  for (int i = 0; i < 7; ++i) {
    packet_loss_rate_ =
        ((alpha_q30 * packet_loss_rate_) >> 30) + ((1 << 30) - alpha_q30);
  }

  int max_wait_ms =
      100.0 * ms_per_loss_percent * packet_loss_rate_ / (1 << 30);

// 那么 max_wait_ms 计算得到为 55ms。

  随着丢包个数的增加,最大等待时间也会增长。下面画了一张最大等待时间和每次计算丢包个数的曲线图:

在这里插入图片描述
  上面的图显示,随着丢包数不断增加,等待的时间增长也变得缓慢,即使把连续丢包数增加到199个(这个连续丢包指的是每次接到的数据跳了199个,在现实的网络环境中,随机丢包基本不可能出现这种情况,除非完全堵死)也只是增加到了1099ms。因此,音频的nack相比视频来说更注重实时性,因为很多时候丢一两个包,整体的沟通也不会有太大的影响。

二、优化思路

  在实时传输中,我们需要根据应用的场景进行针对性调整。例如:我们常常看到导弹的引导画面会出现各种花屏的情况,在这种实时性要求较高,体验要求低的战场场景下,那么多重传并没有意义。相反,在延迟较大的CDN直播场景下,实时要求低,质量要求高的情况下重传来保证整体的质量就更有必要。因此,我们可以思考一下,在我们各自的使用场景中是否需要提高Nack重传的效率。
  基于上面的理解,我们对NackTracker进行分析:

  接收RTP:
在这里插入图片描述

  发送Nack:
在这里插入图片描述

  限制发送Nack的位置就是我们可以做手脚的地方:
  1.调整播放时间和RTT的比,想速度变快就把RTT变为 RTT/2 或者 RTT/4,想速度变慢就把RTT变为2RTT 或者 3RTT;
  2.在增加重传速度时,也可以适当的调长最大等待时间。
    可以增加每多一个丢包等待的时间;也可以调整平滑值来增大丢包率的平滑值。

  struct Config {
    Config();

    // The exponential decay factor used to estimate the packet loss rate.
    // 这个值会影响丢包率的平滑值
    double packet_loss_forget_factor = 0.996;
    // How many additional ms we are willing to wait (at most) for nacked
    // packets for each additional percentage of packet loss.
    // 这个值是每多一个丢包,多等待的时间值
    int ms_per_loss_percent = 20;
    // If true, never nack packets more than once.
    // 这个值影响是否第二次重传
    bool never_nack_multiple_times = false;
    // Only nack if the RTT is valid.
    // 这个值代表只有在RTT生效时发送Nack
    bool require_valid_rtt = false;
    // Default RTT to use unless `require_valid_rtt` is set.
    // 默认RTT值
    int default_rtt_ms = 100;
    // Do not nack if the loss rate is above this value.
    // 最大丢包率限制
    double max_loss_rate = 1.0;
  };

三、测试

  本次测试中间通过了进行过上行Nack调整的Mediasoup服务器。在原先的测试中我们发现,当上行存在小丢包,下行大延迟的网络环境中,音频会产生很大的丢包,相比我们调整过的Nack视频确没有任何丢包产生,于是我们进行了以下调整,使音频与视频效果对其:
  1.调整重传限制为,待播放时间差 大于 rtt/2 就进行重传;
  2.调整等待时间为 2倍的最大等待(根据计算,在延迟600ms时,大部分音频的重传都超过了最大等待时间)。


进行测试:

环境视频表现音频表现码率增加
上行 15%丢包,下行 600ms延迟几乎没有丢包,偶现卡顿几乎没有丢包,无明显丢字约23%
下行30%丢包,下行100ms延迟几乎没有丢包,偶现卡顿几乎没有丢包,无明显丢字约34%

四、总结

  音频NackTracker的逻辑与视频NackRequest有相似的地方,但是相比多了播放时间以及丢包的等待估计,因此限制更多。在同样的模拟环境下,原NackTracker的逻辑丢包明显。这与音频的特点有关,音频可以合理的丢弃数据并不会明显的影响听感,但是视频少一个数据就无法组成完整的图像。因此WebRTC为了保证实时性,增加了播放时间对比以及丢包参考,如果想要保证Nack的效果与视频一致,那么也需要调整一下它的频率和最大限制。但这不意味着效果更好,因为测试发现它的带宽消耗相对高了不少,因此我们需要结合场景考虑

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/703805.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode | 58.最后一个单词的长度

这道题要求最后一个单词的长度&#xff0c;第一个想到的就是反向遍历字符串&#xff0c;寻找最后一个单词并计算其长度。由于尾部可能会有’ &#xff0c;所以我们从后往前遍历字符串&#xff0c;找到第一个非空格的字符&#xff0c;然后记录下到下一个空格前依次有多少个字母即…

HCIA1 华为VRP系统基本操作

1.实验组网介绍 使用PC电脑通过串口线&#xff0c;直连1台全新的路由器console port&#xff0c;进行简单配置。 2.配置思路 2.1配置设备名称 2.2配置路由器接口地址 2.3保存配置并重启设备 3.配置步骤 3.1 Console方式登录 略 3.2查看设备版本信息 3.3设备基本配置 &am…

【全开源】快递寄件小程序源码(FastAdmin+ThinkPHP+原生微信小程序)

&#x1f4e6;快递寄件小程序&#xff1a;轻松寄送&#xff0c;便捷生活 &#x1f69a;一、引言&#xff1a;告别繁琐&#xff0c;让寄件更简单 在繁忙的生活中&#xff0c;寄送快递往往成为我们的一大难题。传统的寄件方式需要前往快递公司网点&#xff0c;填写繁琐的寄件信…

css系列:音频播放效果-波纹律动

介绍 语音播放的律动效果&#xff0c;通俗来说就是一个带动画的特殊样式的进度条&#xff0c;播放的部分带有上下律动的动画&#xff0c;未播放的部分是普通的灰色竖状条。 实现中夹带了less变量、继承和循环遍历&#xff0c;可以顺带学习一下。 结果展示 大致效果如图所示…

山东大学软件学院项目实训-创新实训-基于大模型的旅游平台(三十二)- 微服务(12)

目录 12.8 RestClient查询文档 12.8.1 快速入门 12.8.2 match&#xff0c; term&#xff0c;bool&#xff0c;range查询 12.8.3 排序和分页 12.8.4 高亮 12.8 RestClient查询文档 12.8.1 快速入门 Testvoid testMatchALL() throws IOException {// 1. 准备requestSearchReq…

千锤百炼之每日算法(四)

题外话 想知道大家都喜欢博客写什么内容,大家可以在评论区留言!! 正题 第一题 Fibonacci数列是这样定义的&#xff1a; F[0] 0 F[1] 1 for each i ≥ 2: F[i] F[i-1] F[i-2] 因此&#xff0c;Fibonacci数列就形如&#xff1a;0, 1, 1, 2, 3, 5, 8, 13, ...&#xff0c;在F…

Webshell-jsp 冰蝎流量

考点:冰蝎jsp流量解密crc碰撞png暴力爆破宽高 主要是和 main.jsp进行通信浅浅看一下 yjg.txt内容 用jsp写的一些脚本 过滤http流量 可以判断是 冰蝎 的jsp webshell 尝试爆破常用密钥 无果 那么 密钥一定在流量中 看冰蝎动态生成密钥的最后一个返回包 就是明文的key 尝试多试…

高考填报志愿选专业,理科生如何选专业?

理科相对比较好选专业&#xff0c;因为院校多&#xff0c;专业多&#xff0c;当然招生名额也多&#xff0c;对于一般普通家庭的学生来说&#xff0c;理科生比文科生的就业前景好。但这是一个就业形势十分严峻的时代&#xff0c;没有谁敢绝对的说自己一定能在某个专业中学到知识…

【设计模式深度剖析】【7】【行为型】【观察者模式】

&#x1f448;️上一篇:中介者模式 设计模式-专栏&#x1f448;️ 文章目录 观察者模式英文原文直译如何理解&#xff1f; 观察者模式的角色类图代码示例 观察者模式的应用观察者模式的优点观察者模式的缺点观察者模式的使用场景 观察者模式 观察者模式&#xff08;Observer…

人工智能系统中毒是一个日益严重的威胁

咨询公司 Protiviti 最近与一家客户公司合作&#xff0c;该公司遭遇了一次不寻常的攻击&#xff1a;一名黑客试图操纵输入该公司人工智能系统的数据。 公司领导仍在调查此次攻击&#xff0c;公司怀疑黑客试图扭曲人工智能系统的输出。 此类攻击并非新鲜事&#xff0c;但在网络…

C语言详解(预编译)

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f4a5;&#x1f4a5;个人主页&#xff1a;奋斗的小羊 &#x1f4a5;&#x1f4a5;所属专栏&#xff1a;C语言 &#x1f680;本系列文章为个人学习…

【code-server】Code-Server 安装部署

Code-Server 安装部署 1.环境准备 可以参考 https://coder.com/docs/code-server/install code-server的安装流程进行安装&#xff0c;主机环境是 Centos7 建议使用 docker 方式进行安装&#xff0c;可能会出现如下报错&#xff0c;需要升级 GNC 的版本&#xff0c;由于影响交…

RabbitMQ配置与交换机学习

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f4a5;&#x1f4a5;个人主页&#xff1a;奋斗的小羊 &#x1f4a5;&#x1f4a5;所属专栏&#xff1a;C语言 &#x1f680;本系列文章为个人学习…

《吸血鬼猎人D》观后感

前言 在B站无意中发现了一部动漫电影《吸血鬼猎人D》&#xff0c;看着封面还不错&#xff0c;就试着点开了视频&#xff0c;看了一会儿&#xff0c;发现画面很精美&#xff0c;人物造型高大威猛&#xff0c;肌肉线条清晰可见。如果我没记错的话&#xff0c;这种风格在日本动漫中…

C语言复习总结(含代码例程)

数据类型 基本类型&#xff1a;字符型、整型、浮点型、双精度浮点型 构造类型&#xff1a;数组、指针、结构体、共用体和枚举 字符型&#xff1a; 类型表示&#xff1a; (signed) char char -- 有符号 char 型 unsigned char -- 无符号 char 型 类型大小&#xff…

平衡树之B树

平衡树 ├── AVL 树 ├── 红黑树 ├── 2-3 树 ├── B 树 ├── Splay 树 └── Treap没研究明白&#xff0c;算啦。不写了

Opus从入门到精通(一)简介

Opus从入门到精通(一):简介 Opus是什么? Opus编解码器是专门设计用于互联网的交互式语音和音频传输。它是由IETF的编解码器工作组设计的&#xff0c;合并了Skype的SILK和Xiph. Org的CELT技术。 Opus编解码器的设计目的是处理广泛的交互式音频应用程序,包括IP语音,视频,游戏…

列出docker常用的命令

一、基础命令 docker run 创建并启动一个容器 docker ps 列出当前运行的容器 docker ps -a 列出所有容器&#xff0c;包括未运行的 docker stop 停止一个运行中的容器 docker start 启动一个已停止的容器 docker restart 重启容器 docker rm 删除一个或多个容器 docker pull 从…

揭秘Netflix背后的魔法:如何用三层架构打造个性化推荐帝国

推荐系统就像一家餐厅的菜单推荐 想象一下&#xff0c;你走进一家餐厅&#xff0c;面对琳琅满目的菜单&#xff0c;不知道点什么好。这时候&#xff0c;服务员给你推荐了几道菜&#xff0c;这些推荐是基于你以往的口味偏好和其他顾客的选择。Netflix的推荐系统也是类似的&…

浅谈golang字符编码

1、 Golang 字符编码 Golang 的代码是由 Unicode 字符组成的&#xff0c;并由 Unicode 编码规范中的 UTF-8 编码格式进行编码并存储。 Unicode 是编码字符集&#xff0c;囊括了当今世界使用的全部语言和符号的字符。有三种编码形式&#xff1a;UTF-8&#xff0c;UTF-16&#…