Flink的简单学习五

一 动态表与连续查询

1.1 动态表

1.是flink的支持流数据Table API 和SQL的核心概念。动态表随时间的变化而变化

2.在流上面定义的表在内部是没有数据的

1.2 连续查询

1.永远不会停止,结果是一张动态表

 

 

二 Flink SQL

2.1 sql行

1.先启动启动flink集群

yarn-seesion.sh -d

 2.进入sql命令行

sql-client.sh

 3.创建一张数据源来自于kafka的表

如果退出命令行界面,这个表也不存在了,因为这个表基于内存的

CREATE TABLE students (
  id STRING,
  name STRING,
  age INT,
  sex STRING,
  clazz STRING
) WITH (
  'connector' = 'kafka',
  'topic' = 'students', -- 指定topic
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
  'properties.group.id' = 'testGroup', -- 指定消费者组
  'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
  'format' = 'csv' -- 指定数据的格式
);

4.执行sql语句

select 
clazz,count(1)as num
from students
group by clazz; 

这个结果也是一张动态表 

2.2打印结果模式

2.2.1 表格模式(table mode)默认

在内存中实体化结果,并将结果用规则的分页表格可视化展示出来。执行如下命令启用:

SET 'sql-client.execution.result-mode' = 'table';

 这个就是表格模式

2.2.2 变更日志模式(changelog mode)

不会实体化和可视化结果,而是由插入(+)和撤销(-)组成的持续查询产生结果流。开启命令:

SET 'sql-client.execution.result-mode' = 'changelog';

 我在kafka生产端添加了一条理科六班的数据,他表的变化是先加后减然后再加,他就是属于update,有之前的数据更新

我又在kafka生产端添加了一条理科六班1的数据,这张动态表之前没有这个数据,所以他是insert

2.2.3 Tableau模式(tableau mode)

1.更接近传统的数据库,会将执行的结果以制表的形式直接打在屏幕之上。具体显示的内容会取决于作业 执行模式的不同(execution.type):

2.命令

SET 'sql-client.execution.result-mode' = 'tableau';

类似于日志一样,不会新开一个窗口,数据的添加还是跟变更日志模式一样 ,但是添加已有数据的方法是不一样的他是先减后加,他是Retract流,添加之前没有数据还是insert

2.3 连接器

2.3.1 kafka

1.导入依赖,放到flink的lib目录下

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-kafka</artifactId>
  <version>1.15.4</version>
</dependency>
 1.kafka source

1.是无界流,将Kafka的数据->flink-sql

2.建表语句

-- 创建表 --- 无界流
-- TIMESTAMP(3): 时flink总的时间字段
CREATE TABLE students_kafka (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING,
    `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',-- 获取kafka时间戳
    `partition` BIGINT METADATA VIRTUAL, -- 获取kafka数据所在的分区
    `offset` BIGINT METADATA VIRTUAL,-- 偏移量
    -- 指定时间字段和水位线生成策略
    WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'students',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
);

 2.查询语句

select id,name,event_time,`partition`,`offset` from students_kafka;

2. kafka sink
非聚合结果

也叫将仅插入的结果

1.建表(非聚合结果的)语句

-- 创建sink表
CREATE TABLE students_kafka_sink (
    id STRING,
    name STRING
) WITH (
  'connector' = 'kafka',
  'topic' = 'id_name',
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
  'properties.group.id' = 'testGroup',
  'scan.startup.mode' = 'earliest-offset',
  'format' = 'csv'
);

2.将非聚合查询结果插入的结果写入sink表

-- 1、将仅插入的结果写入sink表
insert into students_kafka_sink
select id,name from 
students_kafka;

3.查看结果需要用到kafka的消费端,也可以使用sql

1.消费端:

kafka-console-consumer.sh --bootstrap-server  master:9092,node1:9092,node2:9092 --from-beginning --topic id_name
select * from students_kafka_sink;

2.sql:

select * from students_kafka_sink;

聚合结果

将更新更改查询结果

指定类型需要指定  'format' = 'canal-json'

1.建表语句

-- 将更新更改的流写入kafka需要使用canal-json格式,
-- canal-json中带上了数据操作的类型
-- {"data":[{"clazz":"理科六班","num":377}],"type":"INSERT"}

CREATE TABLE clazz_num (
    clazz STRING,
    num BIGINT
) WITH (
  'connector' = 'kafka',
  'topic' = 'clazz_num',
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
  'properties.group.id' = 'testGroup',
  'scan.startup.mode' = 'earliest-offset',
  'format' = 'canal-json'
);

2.将更新更改查询结果写入kafka

insert into clazz_num
select 
clazz,
count(1) as num
from 
students_kafka
group by 
clazz;

3.查询结果

1.消费:

kafka-console-consumer.sh --bootstrap-server  master:9092,node1:9092,node2:9092 --from-beginning --topic clazz_num
2.sql:

select * from clazz_num;

2.3.2 JDBC

1.整合

# 将依赖包上传到flink的lib目录下
flink-connector-jdbc-1.15.2.jar
mysql-connector-java-5.1.47.jar

# 依赖更新后需要重启集群才会生效
yarn application -list
yarn application -kill [appid]
yarn-session.sh -d

sql-client.sh

1.mysql source

1.有界流,将mysql的数据写进flink-sql中

2.字段名称和字段类型需要和数据库中保存一致

3.建表语句

-- 创建soure  表  --- 有界流
-- 字段名称和字段类型需要和数据库中保存一致
CREATE TABLE students_mysql (
    id int,
    name STRING,
    age INT,
    gender STRING,
    clazz STRING
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://master:3306/bigdata29',
    'table-name' = 'students',
    'username' ='root',
    'password' = '123456'
);

2.mysql sink

1.将flink-sql中的一张表或者查询语句的结果存放在mysql中

2.mysql中表需要提前创建

3.需要增加主键约束,flink会通过主键更新数据

3.mysql中的表也是动态变化的,只要flink中的表变了

4.建表语句

-- 创建mysql sink表。需要增加主键约束,flink会通过主键更新数据
CREATE TABLE clazz_num_mysql (
    clazz STRING,
    num BIGINT,
    PRIMARY KEY (clazz) NOT ENFORCED
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://master:3306/bigdata29?useUnicode=true&characterEncoding=UTF-8',
    'table-name' = 'clazz_num_flinkToMysql', -- 需要手动创建
    'username' ='root',
    'password' = '123456'
);

5.查询语句

insert into clazz_num_mysql
select 
clazz,
count(1) as num
from 
students_kafka
group by 
clazz;

2.3.3 hdfs

1.hdfs source
有界流表

1.建表语句

-- 创建hdfs source表 -- 有界流
CREATE TABLE students_hdfs (
    id int,
    name STRING,
    age INT,
    gender STRING,
    clazz STRING
) WITH (
    'connector' = 'filesystem',           -- 必选:指定连接器类型
    'path' = 'hdfs://master:9000/bigdata29/data/students.csv',  -- 必选:指定路径
    'format' = 'csv'                    -- 必选:文件系统连接器指定 format
);

无界表

1.他是定时监控一个文件夹下面的文件,所以是无界流

2.需要配置扫描文件夹的间隔时间

3.建表语句

-- 创建hdfs source表 -- 无界流
CREATE TABLE students_hdfs_stream (
    id int,
    name STRING,
    age INT,
    gender STRING,
    clazz STRING
) WITH (
    'connector' = 'filesystem',           -- 必选:指定连接器类型
    'path' = 'hdfs://master:9000/data/students',  -- 必选:指定路径
    'format' = 'csv',                    -- 必选:文件系统连接器指定 format
    'source.monitor-interval' = '5000' -- 指定扫描目录的间隔时间
);

2. hdfs sink
 非聚合结果

1.也叫将仅插入的结果

2.建表语句

-- 将仅追加的结果流写入hdfs
CREATE TABLE students_hdfs_sink (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING
) WITH (
    'connector' = 'filesystem',           -- 必选:指定连接器类型
    'path' = 'hdfs://master:9000/data/students_sink',  -- 必选:指定路径
    'format' = 'csv'                    -- 必选:文件系统连接器指定 format
);

3.插入语句

insert into students_hdfs_sink
select id,name,age,sex,clazz from students_kafka;

集合结果

1.将更新更改查询结果保存到hdfs中

2.指定类型  'format' = 'canal-json'

3.建表语句

CREATE TABLE clazz_num_hdfs (
    clazz STRING,
    num BIGINT
) WITH (
    'connector' = 'filesystem',           -- 必选:指定连接器类型
    'path' = 'hdfs://master:9000/data/clazz_num',  -- 必选:指定路径
    'format' = 'canal-json'                    -- 必选:文件系统连接器指定 format
);

4.查询语句

insert into clazz_num_hdfs
select 
clazz,
count(1) as num
from
students_kafka
group by clazz;

2.3.4 hbase

1.整合

# 将依赖包上传到flink的lib目录下
flink-sql-connector-hbase-2.2-1.15.2.jar

# 依赖更新后需要重启集群才会生效
yarn application -list
yarn application -kill [appid]
yarn-session.sh -d

sql-client.sh

2.hbase最好在存储数据的地方,因为他查询比较麻烦

3.先创建hbase表

create 'students_flink','info'

4.创建hbase sink表

-- 创建hbase sink表
CREATE TABLE students_hbase (
 id STRING, 
 info ROW<name STRING,age INT,sex STRING,clazz STRING>, -- 指定列簇中的咧
 PRIMARY KEY (id) NOT ENFORCED -- 设置hbaserowkey
) WITH (
 'connector' = 'hbase-2.2',
 'table-name' = 'students_flink',
 'zookeeper.quorum' = 'master:2181,node1:2181,node2:2181'
);

5.查看结果

在flink-sql查看:select * from students_hbase;

在hbase查看:scan 'students_flink'

2.3.5 datagen

1.用于生成测试数据,可以用于高性能测试,这个数据是随机生成的

2.建表语句

-- 创建datagen source表
CREATE TABLE students_datagen (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING
) WITH (
    'connector' = 'datagen',
    'rows-per-second'='5', -- 指定每秒生成的数据量
    'fields.id.length'='5',
    'fields.name.length'='3',
    'fields.age.min'='1',
    'fields.age.max'='100',
    'fields.sex.length'='1',
    'fields.clazz.length'='4'
);

2.3.7 print

1.结果在task manager查看

2.建表语句

CREATE TABLE print_table (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING
) WITH (
 'connector' = 'print'
);

3.插入语句

insert into print_table
select * from students_datagen;

4.结果

2.3.8 BlackHole

1.用于高性能测试

2.建表

CREATE TABLE blackhole_table (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING
) WITH (
  'connector' = 'blackhole'
);

3.插入数据

insert into blackhole_table
select * from students_datagen;

4.没有结果

2.4 处理模式

2.4.1流处理模式

1、可以用于处理有界流和无界流

2、流处理模式输出连续结果

3、流处理模式底层时持续流模型

设置参数,直接在flink-sql的客户端直接输入

SET 'execution.runtime-mode' = 'streaming'; 

流处理结果图

2.4.2 批处理模式

1、批处理模式只能用于处理有界流

2、输出最终结果

3、底层是MapReduce模型  

设置直接输入

SET 'execution.runtime-mode' = 'batch';  

批处理结果图

 

2.5 数据格式

2.5.1 csv

1.默认是以英文逗号为分隔符

2.数据中字段的顺序需要和建表语句字段的顺序保持一致 (顺序映射)

3.建表语句

CREATE TABLE students_csv (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'students', -- 指定topic
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
    'properties.group.id' = 'testGroup', -- 指定消费者组
    'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
    'format' = 'csv', -- 指定数据的格式
    'csv.field-delimiter' = ',' ,-- 指定分隔符
    'csv.ignore-parse-errors' ='true' -- 跳过脏数据
);

2.5.2 json

1.flink表中的字段和类型需要和json中保持一致(同名映射)

2.建表

CREATE TABLE cars (
    car STRING,
    city_code STRING,
    county_code STRING,
    card BIGINT,
    camera_id STRING,
    orientation STRING,
    road_id BIGINT,
    `time` BIGINT,
    speed DOUBLE
) WITH (
    'connector' = 'kafka',
    'topic' = 'cars', -- 指定topic
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
    'properties.group.id' = 'testGroup', -- 指定消费者组
    'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
    'format' = 'json', -- 指定数据的格式
    'json.ignore-parse-errors' ='true'
);

2.5.3 canal-json

1.用于保存更新更改的结果流(聚合计算的结果保存到其他位置)

2.例子

CREATE TABLE clazz_num (
    clazz STRING,
    num BIGINT
) WITH (
  'connector' = 'kafka',
  'topic' = 'clazz_num',
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
  'properties.group.id' = 'testGroup',
  'scan.startup.mode' = 'earliest-offset',
  'format' = 'canal-json'
);

insert into clazz_num
select 
clazz,
count(1) as num
from 
students_kafka
group by 
clazz;

2.6 时间属性

2.6.1 处理时间

1.PROCTIME() 生成处理时间的函数

2.建表语句

CREATE TABLE words (
    word STRING,
    proctime AS PROCTIME() -- 声明一个额外的列作为处理时间属性
) WITH (
    'connector' = 'kafka',
    'topic' = 'words',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
);

2.查询结果

select * from words;

3. 实时统计每个单词最近5秒单词的数量

select 
    word,
    TUMBLE_START(proctime,INTERVAL '5' SECOND) win_start,
    TUMBLE_END(proctime,INTERVAL '5' SECOND) win_end,
    count(1) as num
from 
    words
group by 
    word,
    TUMBLE(proctime,INTERVAL '5' SECOND); --prctime表示处理时间的字段,INTERVAL '5' SECOND表示窗口的大小

2.6.2 事件时间

1.建表语句

注意:这个时间字段一定是时间戳形式,且字段里面有时间的概念。

CREATE TABLE words_event_time (
    word STRING,
    `event_time` TIMESTAMP(3), -- 时间字段
    -- 指定时间字段和水位线生成策略
    WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'words_event_time',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
);

 2.7 sql语法

2.7.1 hints

1.动态表选择:可以在查询表的时候动态修改表的参数配置

2.查询语句

select * from students /*+ OPTIONS('csv.ignore-parse-errors' ='true') */;

students动态表的参数

WITH (
  'connector' = 'kafka',
  'topic' = 'students', -- 指定topic
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
  'properties.group.id' = 'testGroup', -- 指定消费者组
  'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
  'format' = 'csv' -- 指定数据的格式
); 

2.7.2 with

1.当有一段sql逻辑重复时,可以定义在with语句中,减少代码量

2.sql

with tmp as (
    select 
    id,name,age,clazz 
    from 
    students_hdfs_stream
    where age > 22 --括号里面的逻辑是多次出现的
)
select * from tmp
union all
select * from tmp; 

 

 2.7.3 SELECT WHERE

1.简单的语句,不必多说

2.7.4 SELECT DISTINCT

对于流处理的问题
1、flink会将之前的数据保存在状态中,用于判断是否重复
2、如果表的数据量很大,随着时间的推移状态会越来越大,状态的数据时先保存在TM的内存中的,时间长了可能会出问题

注意:distinct后面加字段

2.7.5 窗口函数

1.滚动窗口函数

1.建表语句

CREATE TABLE bid (
    item  STRING,
    price  DECIMAL(10, 2),
    bidtime TIMESTAMP(3),
    WATERMARK FOR bidtime AS bidtime - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'bid',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
);

2.添加数据

kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic bid
C,4.00,2020-04-15 08:05:01
A,2.00,2020-04-15 08:07:01
D,5.00,2020-04-15 08:09:01
B,3.00,2020-04-15 08:11:01
E,1.00,2020-04-15 08:13:01
F,6.00,2020-04-15 08:17:01

3.查询语句

SELECT item,price,bidtime,window_start,window_end,window_time FROM TABLE(
   TUMBLE(TABLE bid, DESCRIPTOR(bidtime), INTERVAL '10' MINUTES)
);

其中TUMBLE:滚动窗口函数,在原表的基础上增加窗口开始时间,窗口结束时间,窗口时间,重新组成一张表

DESCRIPTOR(bidtime)里面传入的是事件时间,INTERVAL '10' MINUTES:窗口的大小

2.滑动窗口函数

1.建表语句

CREATE TABLE bid_proctime (
    item  STRING,
    price  DECIMAL(10, 2),
    proctime AS PROCTIME()
) WITH (
    'connector' = 'kafka',
    'topic' = 'bid_proctime',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
);

 PROCTIME() 生成处理时间的函数

2.添加数据

kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic bid_proctime
C,4.00
A,2.00
D,5.00
B,3.00
E,1.00
F,6.00

3.查询语句

SELECT item,price,proctime,window_start,window_end,window_time FROM TABLE(
    HOP(TABLE bid_proctime, DESCRIPTOR(proctime), INTERVAL '5' SECOND, INTERVAL '10' SECOND)
); 

HOP:滑动窗口函数,在原表的基础上增加窗口开始时间,窗口结束时间,窗口时间,重新组成一张表

DESCRIPTOR:里面是时间

INTERVAL '5' SECOND, INTERVAL '10' SECOND:每五秒计算窗口为10秒里的数据

3.会话窗口

1.查询语句

select 
    item,
    SESSION_START(proctime,INTERVAL '5' SECOND)  as session_start,
    SESSION_END(proctime,INTERVAL '5' SECOND)  as session_end,
    sum(price) as sum_price
from 
    bid_proctime
group by
    item,
    SESSION(proctime,INTERVAL '5' SECOND);

再5秒里面,窗口没有数据开始计算

 2.7.6 group by

1.分组聚合需要将之前的计算结果保存在状态中,
如果状态无限增长,会导致checkpoint时间拉长,如果checkpoint超时失败了,也会导致任务失败

2.需要在表的参数后面加一个参数 /*+ OPTIONS('fields.word.length'='7') */,可以将这个数字变小一点,状态会变小一点

insert into blackhole_table
select 
    word,
    count(1)as num
from 
    words_datagen /*+ OPTIONS('fields.word.length'='7') */
group by 
    word;

2.7.7 over

1.sum开窗

1.只能做累加,不能做全局(要有order by)

2.只能按照时间字段升序

3.建表语句

CREATE TABLE `order` (
    order_id  STRING,
    amount  DECIMAL(10, 2),
    product STRING,
    order_time TIMESTAMP(3),
    WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'order',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
);

4.插入语句

kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic order
1,4.00,001,2020-04-15 08:05:01
2,2.00,001,2020-04-15 08:07:01
3,5.00,001,2020-04-15 08:09:01
4,3.00,001,2020-04-15 08:11:01
5,1.00,001,2020-04-15 08:13:01
6,6.00,001,2020-04-15 08:17:01
6,6.00,001,2020-04-15 08:20:01
6,6.00,001,2020-04-15 08:21:01
6,10.00,001,2020-04-15 08:21:02
6,11.00,001,2020-04-15 08:21:03
6,12.00,001,2020-04-15 08:21:04

5.查询语句

--实时统计每个商品的累计总金额,将总金额放在每一条数据的后面

select 
    order_id,
    amount,
    product,
    order_time,
    sum(amount) over(
        partition by product  
        order by order_time
    )
from 
    `order`

-- 2、实时统计每个商品的累计总金额,将总金额放在每一条数据的后面,只统计最近10分钟的数据
select 
    order_id,
    amount,
    product,
    order_time,
    sum(amount) over(
        partition by product  
        order by order_time
        -- 统计10分钟前到当前行的数据
        RANGE BETWEEN INTERVAL '10' MINUTES PRECEDING AND CURRENT ROW
    )
from 
    `order`
;

 

-- 2、实时统计每个商品的累计总金额,将总金额放在每一条数据的后面,计算最近5条数据
select 
    order_id,
    amount,
    product,
    order_time,
    sum(amount) over(
        partition by product  
        order by order_time
        -- 从前4条数据到当前行
        ROWS BETWEEN 4 PRECEDING AND CURRENT ROW
    )
from 
    `order`
;

2.max,min,avg,count

-- 2、实时统计每个商品的最大金额,将总金额放在每一条数据的后面,计算最近5条数据
select 
    order_id,
    amount,
    product,
    order_time,
    max(amount) over(
        partition by product  
        order by order_time
        -- 从前4条数据到当前行
        ROWS BETWEEN 4 PRECEDING AND CURRENT ROW
    )
from 
    `order`

3. row_number

1.如果只是增加排名,只能按照时间字段升序排序

select 
    order_id,
    amount,
    product,
    order_time,
    row_number() over(partition by product order by order_time) as r
from 
    `order`

2.本来开窗的字段只能是时间字段,如果外面接一个子查询,那么就没有限制了

-- 实时统计每个商品金额最高的前两个商品  -- TOPN
-- 去完topn之后需要计算的排名的数据较少了,计算代价降低了
select * 
from (
    select 
        order_id,
        amount,
        product,
        order_time,
        row_number() over(partition by product order by amount desc) as r
    from 
        `order`
)
where r <= 2 

 2.7.8 order by

1.考虑计算代价,只能按照时间字段来进行升序(第一个字段必须是时间字段,后面可以是非时间字段)

select * from 
`order`
order by 
order_time,amount

2. 不考虑计算代价,加上子查询或者limit限制,那么可以是非时间字段

select * from 
`order`
order by 
amount
limit 2;

2.7.9 模式监测

1.建表语句

CREATE TABLE tran (
    id  STRING,
    amount  DECIMAL(10, 2),
    proctime as PROCTIME()
) WITH (
    'connector' = 'kafka',
    'topic' = 'tran',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'latest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
); 

2.插入语句

kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic tran
1,4.00
1,2.00
1,5.00
1,0.90
1,600.00
1,4.00
1,2.00
1,0.10
1,200.00
1,700.00 

3.查询语句

定义单个

-- 我们先实现第一版报警程序,对于一个账户,如果出现小于 $1 美元的交易后紧跟着一个大于 $500 的交易,就输出一个报警信息。
SELECT *
FROM tran
    MATCH_RECOGNIZE (
      PARTITION BY id -- 分组字段
      ORDER BY proctime -- 排序字段,只能按照时间字段升序排序
      MEASURES -- 相当于select
        A.amount as min_amount,
        A.proctime as min_proctime,
        B.amount as max_amount,
        B.proctime as max_proctime
      PATTERN (A B) --  WITHIN INTERVAL '5' SECOND -- 定义规则,增加事件约束,需要在5秒内匹配出结果
      DEFINE -- 定义条件
        A as amount < 1,
        B as amount > 500
    ) AS T 

定义多个,可以使用正则表达式

SELECT *
FROM tran
    MATCH_RECOGNIZE (
      PARTITION BY id -- 分组字段
      ORDER BY proctime -- 排序字段,只能按照时间字段升序排序
      MEASURES -- 相当于select
        A.amount as a_amount, -- 获取最后一条

        min(A.amount) as min_a_amount, -- 取最小的
        max(A.amount) as max_a_amount, -- 取最大的

        sum(A.amount) as sum_a_amount, -- 求和
        avg(A.amount) as avg_a_amount, -- 平均

        FIRST(A.amount) AS first_a_amount, -- 取前面第一条
        LAST(A.amount) AS LAST_a_amount, -- 取后面第一条

        B.amount as b_amount
      PATTERN (A{3} B) -- 定义规则,这里定义了3个A,一个B
      DEFINE -- 定义条件
        A as amount < 1,
        B as amount > 500
    ) AS T;

 

 注意他默认的是匹配策略是SKIP TO NEXT ROW,如果想要修改,直接加参数AFTER MATCH SKIP PAST LAST ROW -- 从当前匹配成功之后的下一行开始匹配

另一个例题 

CREATE TABLE ticker (
    symbol  STRING,
    rowtime  TIMESTAMP(3), -- 时间字段
    price  DECIMAL(10, 2) ,
    tax  DECIMAL(10, 2),
    -- 指定时间字段和水位线生成策略
    WATERMARK FOR rowtime AS rowtime
) WITH (
    'connector' = 'kafka',
    'topic' = 'ticker',
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092',
    'properties.group.id' = 'testGroup',
    'scan.startup.mode' = 'latest-offset',
    'format' = 'csv',
    'csv.ignore-parse-errors' ='true' -- 当有脏数据时是否跳过当前行
);

kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic ticker
ACME,2024-06-04 10:00:00,12,1
ACME,2024-06-04 10:00:01,17,2
ACME,2024-06-04 10:00:02,19,1
ACME,2024-06-04 10:00:03,21,3
ACME,2024-06-04 10:00:04,25,2
ACME,2024-06-04 10:00:05,18,1
ACME,2024-06-04 10:00:06,15,1
ACME,2024-06-04 10:00:07,14,2
ACME,2024-06-04 10:00:08,24,2
ACME,2024-06-04 10:00:09,25,2
ACME,2024-06-04 10:00:10,19,1

-- 找出一个单一股票价格不断下降的时期
select * from 
ticker
MATCH_RECOGNIZE (
      PARTITION BY symbol -- 分组字段
      ORDER BY rowtime -- 排序字段,只能按照时间字段升序排序
      MEASURES -- 相当于select
        A.price as a_price,
        FIRST(B.price) as FIRST_b_price,
        LAST(B.price) as last_b_price,
        C.price as c_price
      AFTER MATCH SKIP PAST LAST ROW -- 从当前匹配成功之后的下一行开始匹配
      PATTERN (A B+ C) -- 定义规则
      DEFINE -- 定义条件
        -- 如果时第一个B,就和A比较,如果时后面的B,就和前一个B比较
        B as (LAST(B.price,1)is null and B.price < A.price) or B.price < LAST(B.price,1),
        C as C.price > LAST(B.price)
    ) AS T;

2.7.10 join

1 Regular Joins

1.和hive sql中的join是一样的

inner join 内连接:两张表都有的数据

left join 左连接 :左表有数据显示,右表没有为null

right join 右连接:显示右表有的数据,左表没有的为null

full join:全连接:只显示左右表共有的数据

-- 常规的关联方式,会将两个表的数据一直保存在状态中,时间长了,状态会越来越大,导致任务执行失败
-- 状态有效期,状态在flink中保存的事件,状态保留多久需要根据实际业务分析

如果是流表的话需要输入:
SET 'table.exec.state.ttl' = '10000'; --这个代码直接在命令行提前输入

2. Interval Joins

1.在一段时间内关联,字段必须要有时间戳的时间字段,两张表都是流式的。

proctime这个就是时间字段

select a.id,a.name,b.sid,b.score from 
students_proctime a, scores_proctime b
where a.id=b.sid
-- a表的时间需要在b表时间10秒内或者b表的时间需要在a表时间10秒内
and (
    a.proctime BETWEEN b.proctime - INTERVAL '10' SECOND AND b.proctime
    or b.proctime BETWEEN a.proctime - INTERVAL '10' SECOND AND a.proctime
);

3. Temporal Joins

流表关联时态表

1.建表语句

CREATE TABLE orders (
    order_id    STRING,
    price       DECIMAL(32,2),
    currency    STRING,
    order_time  TIMESTAMP(3),
    WATERMARK FOR order_time AS order_time
) WITH (
  'connector' = 'kafka',
  'topic' = 'orders', -- 指定topic
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
  'properties.group.id' = 'testGroup', -- 指定消费者组
  'scan.startup.mode' = 'latest-offset', -- 指定读取数据的位置
  'format' = 'csv' -- 指定数据的格式
);

kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic orders
o_001,1,EUR,2024-06-06 12:00:00
o_002,100,EUR,2024-06-06 12:00:07
o_003,200,EUR,2024-06-06 12:00:16
o_004,10,EUR,2024-06-06 12:00:21
o_005,20,EUR,2024-06-06 12:00:25

-- 汇率表
CREATE TABLE currency_rates (
    currency STRING,
    conversion_rate DECIMAL(32, 2),
    update_time TIMESTAMP(3),
    WATERMARK FOR update_time AS update_time,
    PRIMARY KEY(currency) NOT ENFORCED -- 主键,区分不同的汇率
) WITH (
  'connector' = 'kafka',
  'topic' = 'currency_rates1', -- 指定topic
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
  'properties.group.id' = 'testGroup', -- 指定消费者组
  'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
  'format' = 'canal-json' -- 指定数据的格式
);

insert into currency_rates
values
('EUR',0.12,TIMESTAMP'2024-06-06 12:00:00'),
('EUR',0.11,TIMESTAMP'2024-06-06 12:00:09'),
('EUR',0.15,TIMESTAMP'2024-06-06 12:00:17'),
('EUR',0.14,TIMESTAMP'2024-06-06 12:00:23');

kafka-console-consumer.sh --bootstrap-server  master:9092,node1:9092,node2:9092 --from-beginning --topic currency_rates1

2.常规关联查询

-- 使用常规关联方式关联时态表只能关联到最新的数据
select 
a.price,a.order_time,b.conversion_rate,b.update_time
from 
orders as a
join
currency_rates as b
on a.currency=b.currency;

 只能取出最新的结果,因为表是动态的

 3.动态join

FOR SYSTEM_TIME AS OF a.order_time: 使用a表的时间到b表中查询对应时间段的数据

select 
a.price,a.order_time,b.conversion_rate,b.update_time
from 
orders as a
join
currency_rates FOR SYSTEM_TIME AS OF a.order_time as b 
on a.currency=b.currency;

 

4. lookup join

1用于流表关联维度表
流表:动态表
维度表:不怎么变化的变,维度表的数据一般可以放在hdfs或者mysql

2.建表语句

CREATE TABLE scores (
    sid INT,
    cid STRING,
    score INT,
    proctime AS PROCTIME()
) WITH (
  'connector' = 'kafka',
  'topic' = 'scores', -- 指定topic
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
  'properties.group.id' = 'testGroup', -- 指定消费者组
  'scan.startup.mode' = 'latest-offset', -- 指定读取数据的位置
  'format' = 'csv' -- 指定数据的格式
);
kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic scores
1500100001,1000001,98
1500100002,1000002,5
1500100001,1000003,137

CREATE TABLE students --这里的学生表只有一条数据(
    id INT,
    name STRING,
    age INT,
    gender STRING,
    clazz STRING
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://master:3306/bigdata29',
    'table-name' = 'student',
    'username' ='root',
    'password' = '123456',
    'lookup.cache.max-rows' = '1000', -- 最大缓存行数
    'lookup.cache.ttl' ='10000' -- 缓存过期时间
);

 3.使用常规关联查询

-- 维表的数据只在任务启动的时候读取一次,后面不再实时读取,
-- 只能关联到任务启动时读取的数据
select a.sid,a.score,b.id,b.name from
scores as a
left join
students  as b
on a.sid=b.id;

如果mysql表里面的数据增加的话,刚刚好增加的部分数据能与流表数据关联,但是查询不到 

4.lookup join

使用这个的前提是流表得是时间字段,

-- lookup join
-- 当流表每来一条数据时,使用关联字段到维表的数据源中查询
-- 每一次都需要查询数据库,性能会降低
select a.sid,a.score,b.id,b.name from
scores as a
left join
students FOR SYSTEM_TIME AS OF a.proctime as b
on a.sid=b.id;

 5.解决 每一次都需要查询数据库,性能会降低的方案

在创建维度表史加2个参数

'lookup.cache.max-rows' = '1000', -- 最大缓存行数
    'lookup.cache.ttl' ='10000' -- 缓存过期时间,这个时间可以根据更新的时间来定义

2.8 整合hive

2.8.1 整合

1.整合

# 上传依赖到flink的lib目录下
flink-sql-connector-hive-3.1.2_2.12-1.15.2.jar

# 重启flink集群
yarn application -list
yarn application -kill XXX
yarn-session.sh -d

sql-client.sh

 2.8.2 hive catalog

1.catalog--->database--->table---->字段---->数据

catalog是数据库上面的一个概念,一个cataloglog中可以有多个database, catalog就是flink抽象的元数据层

2.default_catalog:是flink默认的元数据,将元数据保存在jobmanager的内存中

3.使用

-- 1、启动hive的元数据服务
nohup hive --service metastore &

-- 2、创建hive catalog
 CREATE CATALOG hive_catalog WITH (
  'type' = 'hive',
  'hive-conf-dir' = '/usr/local/soft/hive-3.1.2/conf'  --这个是hive配置文件的路径
);

show catalogs;


--3、切换catalog 
use catalog hive_catalog;


-- 查询hive中的表
select * from hive_catalog.bigdata29.students;

-- 创建数据库
create database flink;

-- flink可以查询hive的表,hive不能查询flink创建的动态表
-- 在hive cagalog 中保存flink的动态表
CREATE TABLE students_csv (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'students', -- 指定topic
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
    'properties.group.id' = 'testGroup', -- 指定消费者组
    'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
    'format' = 'csv', -- 指定数据的格式
    'csv.field-delimiter' = ',' ,-- 指定分隔符
    'csv.ignore-parse-errors' ='true' -- 跳过脏数据
);

 

2.8.3 hive functions 

-- 加载hive函数
LOAD MODULE hive WITH ('hive-version' = '3.1.2');

select split('java,flink',',');

CREATE TABLE lines (
    line STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'lines', -- 指定topic
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
    'properties.group.id' = 'testGroup', -- 指定消费者组
    'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
    'format' = 'csv', -- 指定数据的格式
    'csv.field-delimiter' = '|' ,-- 指定分隔符
    'csv.ignore-parse-errors' ='true' -- 跳过脏数据
);

kafka-console-producer.sh --broker-list master:9092,node1:9092,node2:9092 --topic lines
java,java,flink


select 
word,count(1) as num
from 
lines,
lateral table(explode(split(line,','))) t(word)  --hive中是lateral view
group by 
word;

 2.9 checkpoint

2.9.1 编写sql文件

1.vim word_count.sql

-- 1、创建source表
CREATE TABLE lines (
    line STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'lines', -- 指定topic
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
    'properties.group.id' = 'testGroup', -- 指定消费者组
    'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
    'format' = 'csv', -- 指定数据的格式
    'csv.field-delimiter' = '|' ,-- 指定分隔符
    'csv.ignore-parse-errors' ='true' -- 跳过脏数据
);


-- 创建sink表
CREATE TABLE print_table (
    word STRING,
    num BIGINT
) WITH (
 'connector' = 'print'
);

-- 加载hive函数
LOAD MODULE hive WITH ('hive-version' = '3.1.2');

-- 执行sql
insert into print_table
select 
word,count(1) as num
from 
lines,
lateral table(explode(split(line,','))) t(word)
group by 
word;

2.9.2第一次提交

sql-client.sh -f word_count.sql 

2.9.3 任务失败或者重启

1.基于之前的checkpoint重启任务

2.在inert into 语句的前面增加

SET 'execution.savepoint.path' = 'hdfs://master:9000/flink/checkpoint/d915e6278f156a9278156e67105f914e/chk-36'; 

3.重新提交 

sql-client.sh -f word_count.sql 

2.10 多次使用同一张表

1.编写sql文件

CREATE TABLE students_csv (
    id STRING,
    name STRING,
    age INT,
    sex STRING,
    clazz STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'students', -- 指定topic
    'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- 指定kafka集群列表
    'properties.group.id' = 'testGroup', -- 指定消费者组
    'scan.startup.mode' = 'earliest-offset', -- 指定读取数据的位置
    'format' = 'csv', -- 指定数据的格式
    'csv.field-delimiter' = ',' ,-- 指定分隔符
    'csv.ignore-parse-errors' ='true' -- 跳过脏数据
);

-- 创建sink表
CREATE TABLE clazz_num (
    clazz STRING,
    num BIGINT
) WITH (
 'connector' = 'print'
);

CREATE TABLE sex_num (
    sex STRING,
    num BIGINT
) WITH (
 'connector' = 'print'
);


-- 执行一组sql,如果多个sql中使用了同一张表,flink只会读取一次
EXECUTE STATEMENT SET 
BEGIN
    insert into clazz_num
    select 
    clazz,
    count(1) as num
    from 
    students_csv 
    group by 
    clazz;

    insert into sex_num
    select 
    sex,
    count(1) as num
    from 
    students_csv 
    group by 
    sex;
END;

2.将查询或者插入的语句放在 EXECUTE STATEMENT SET里面

2.11 反压

2.11.1 测试反压

-- 创建datagen source表
CREATE TABLE words_datagen (
    word STRING
) WITH (
    'connector' = 'datagen',
    'rows-per-second'='50000', -- 指定每秒生成的数据量
    'fields.word.length'='5'
);

CREATE TABLE blackhole_table (
    word STRING,
    num BIGINT
) WITH (
  'connector' = 'blackhole'
);

-- 反压发生情况
--1、单词太多,状态太大导致反压
insert into blackhole_table
select 
    word,
    count(1)as num
from 
    words_datagen /*+ OPTIONS('fields.word.length'='6') */
group by 
    word;


--2、数据量太大导致反压
insert into blackhole_table
select 
    word,
    count(1)as num
from 
    words_datagen /*+ OPTIONS('fields.word.length'='5','rows-per-second'='400000') */
group by 
    word;

2.11.2 解决反压

1.增加资源

-- 1、增加Taskmanager的内存
-- 启动汲取设置tm的内存
yarn-session.sh -tm 6G -d

-- 2、增加并行度
SET 'parallelism.default' = '8';

2.预聚合

-- 开启微批处理
set 'table.exec.mini-batch.enabled' ='true';
set 'table.exec.mini-batch.allow-latency' = '5 s';
set 'table.exec.mini-batch.size' ='100000';

-- 开启预聚合
set 'table.optimizer.agg-phase-strategy' ='TWO_PHASE';

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/702846.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

TOGAF架构介绍

框架组件 软件开发过程中通用能力的集合。 一个完整的框架包括&#xff1a;异常处理组件&#xff0c;数据访问组件&#xff0c;日志组件&#xff0c;错误码组件。

面向对象三大特征之:封装

文章目录 什么是封装&#xff1f;封装的设计规范 什么是封装&#xff1f; 就是用类设计对象处理某一个事物的数据时&#xff0c;应该把要处理的数据&#xff0c;以及处理这些书记的方法设计到一个对象中去。 封装的设计规范 合理隐藏&#xff0c;合理暴露 public就是都能访问…

搭建自己的多平台镜像站

# 1. 拉取代码 $ git clone https://github.com/wzshiming/crproxy.git $ cd crproxy/examples/default# 2. 修改网关域名 使用vim编辑start.sh文件&#xff0c;将第五行的gateway变量值修改为你自己设定的域名。 原&#xff1a;gatewaycr.zsm.io 修改为&#xff1a;gatewayXS…

LeetCode | 66.加一

这道题有多个思路&#xff0c;可以依次取数组的每一位&#xff0c;乘10后加下一位&#xff0c;直到最后一位&#xff0c;就得到我们数组所表示的数字&#xff0c;然后加一&#xff0c;然后把新得到的数字再转化为对应的数组&#xff0c;我的做法是直接取数组的最后一位&#xf…

快速上手 GreatSQL 8.0.32-25 with openEuler 24.03 LTS

5 月底&#xff0c;openEuler 24.03 LTS 发布&#xff0c;详情戳&#xff1a; 恭喜&#xff01;openEuler 24.03 LTS 版本发布&#xff1a;首个AI原生开源操作系统 在诸多亮点特性中&#xff0c;有一条值得注意&#xff1a; 集成 GreatSQL 数据库&#xff0c;适用于金融级应用场…

小程序 js+Canvas 绘制半圆环虚线进度条

效果图&#xff1a; 思路&#xff1a;过程分为三步&#xff0c;第1步&#xff0c;先画虚线底部背景&#xff0c;第2步&#xff0c;画动态的虚线&#xff08;已选虚线蓝颜色&#xff09;&#xff0c;第3步&#xff0c;画动态的外标&#xff08;已选虚线外位置的标&#xff09;&a…

面向对象编程

文章目录 面向对象编程是怎么回事&#xff1a;面向对象编程的好处是&#xff1a;对象是啥&#xff0c;如何得到&#xff1f;运行原理代码举例注意事项&#xff1a;空指针异常 黑马学习笔记 面向对象编程是怎么回事&#xff1a; 祖师爷 詹姆斯高斯林 认为万物皆对象&#xff0c…

[next.js] svgr/webpack

nextjs如何配置svg文件&#xff0c;使其像react组件一样导入? 当前next.js 开发环境我使用了--turbo 来开启turbopack加速文件构建&#xff0c;所以之前的一些webpack loader之类的无法正常工作。通过搜索发现一般都是使用svgr/webpack来处理svg&#xff0c;打开svgr官网发现…

Stable Diffusion: ControlNet 插件安装

前面介绍了一些通过代码实现ControlNet进行控制的案例。现在通过Stable Diffusion体验一下更便捷的操作。 Stable Diffusion插件安装办法大致相同。启动Stable Diffusion后&#xff0c;点击最右边的“扩展”&#xff0c;点击“可下载”&#xff0c;点击“加载扩展列表”。 视网…

Linux服务器安装Jupyter,并设置公网访问详细教程

本章教程,主要介绍如何在Linux服务器上安装jupyter,并可以通过公网地址进行访问。 一、安装jupyter pip install jupyter二、生成jupyter配置文件 jupyter notebook --generate-config三、编辑这个配置文件 找到配置文件并修改以下配置项: # 允许所有 IP 地址访问 c.Noteb…

【Java面试】十九、并发篇(下):线程池

文章目录 1、为什么要使用线程池2、线程池的执行原理2.1 七个核心参数2.2 线程池的执行原理 3、线程池用到的常见的阻塞队列有哪些4、如何确定核心线程数开多少个&#xff1f;5、线程池的种类有哪些&#xff1f;6、为什么不建议用Executors封装好的静态方法创建线程池7、线程池…

【C++ | 左值、右值】一文了解C++的左值、右值、左值引用()、右值引用()

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; ⏰发布时间⏰&#xff1a;2024-06-12 1…

鸿蒙轻内核A核源码分析系列五 虚实映射(5)虚实映射解除

虚实映射解除函数LOS_ArchMmuUnmap解除进程空间虚拟地址区间与物理地址区间的映射关系&#xff0c;其中参数包含MMU结构体、解除映射的虚拟地址和解除映射的数量count,数量的单位是内存页数。 ⑴处函数OsGetPte1用于获取指定虚拟地址对应的L1页表项数据。⑵处计算需要解除的无效…

python实现高斯(Gauss)迭代自动计算

实现高斯&#xff08;Gauss&#xff09;迭代自动计算 输入系数矩阵mx、值矩阵mr、迭代次数n&#xff0c;即可得到答案。本人在原博主的代码基础上优化了数据输出形式&#xff0c;原文链接&#xff1a;python实现高斯(Gauss)迭代法_python中gausspp-CSDN博客 运算结果如下图&am…

家用洗地机怎么选?四大行业精品集合,识别度超高

家用洗地机&#xff0c;作为一种能够高效清洁地面的清洁工具&#xff0c;不仅减轻了人们家务的轻度&#xff0c;也给人们腾出了很多空闲的时间去享受生活。但是洗地机那么多&#xff0c;我们在面对洗地机选购的时候&#xff0c;我们应该要注意哪些呢&#xff1f;下面就为大家详…

游戏研发(策略+sass+回调模式)

前言 由于这边需要对接游戏研发后台,基本就是开服,封禁.角色日志等,但是每个游戏提供的接口都是不一样的,所以为了统一处理提前进行sass封装,以便后续可以更好的兼容 同时还涉及了多数据源的问题,因为有些日志太大不可能直接去http调用,会使用直接查询游戏研发的数据库方式这一…

从零实现KV存储项目实战

本项目是从零实现一个完整的、兼容Redis协议的KV数据库项目。 通过每一行代码的编写。你会对整个系统了如指拿&#xff0c;这样对自己基本功的锻炼、对编程能力的提升都是很大的 项目提供完整的视频教程代码 下面是关于KV存储项目的技术大纲&#xff1a; 如果你在学习的过程…

BUAA-2024年春-OO第四单元总结

正向建模与开发 在本单元中&#xff0c;我们需要模拟一个小型的图书管理系统&#xff0c;完成图书馆所支持的相关业务&#xff0c;并遵守一定的规章制度。与前几次不同的是&#xff0c;本单元中&#xff0c;我们需要预先将自己的设计思路用UML来实现&#xff0c;然后进行编程。…

Ecovadis审核的内容

Ecovadis审核的内容。Ecovadis是一家国际性的企业社会责任评估机构&#xff0c;旨在为全球供应链的可持续性发展提供评估和审核。在本文中&#xff0c;我们将从以下几个方面详细介绍Ecovadis审核的内容&#xff1a; 一、Ecovadis审核的范围和目的 Ecovadis审核的范围涵盖了各个…

EMI电路

PFC 功率部分 1 、整流桥是串联 2 、 PFC 电感串联 3 、二极管并联 4 、 MOSFET 并联 EMI电路图