【python】OpenCV—Background Estimation(15)

在这里插入图片描述

文章目录

  • 中值滤波
  • 中值滤波得到图像背景
  • 移动侦测

学习来自 OpenCV基础(14)OpenCV在视频中的简单背景估计

中值滤波

中值滤波是一种非线性平滑技术,主要用于数字信号处理,特别是在图像处理中去除噪声。

一、定义与原理

定义:中值滤波是将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。

原理:基于排序统计理论,通过把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近真实值,从而消除孤立的噪声点。

二、实现方法

在这里插入图片描述

选择一个窗口:通常选择一个(2n+1) x (2n+1)的窗口(如3x3或5x5),使窗口沿图像数据的行方向和列方向从左至右、从上至下滑动。

像素排序:对于窗口内的每个像素,按照其灰度值进行排序。

选择中值:从排序后的像素值中选择中间值作为输出灰度值。

三、特性与优点

抑制噪声:对脉冲噪声和椒盐噪声有良好的滤除作用。

保护边缘:在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。

简单高效:算法比较简单,也易于用硬件实现。

四、适用场景

适用于去除椒盐噪声等孤立噪声。

在图像处理中,常用于保护边缘信息,是经典的平滑噪声的方法。

五、缺点

对于一些点、线、尖顶的细节多的数字图像,以及纹理特征明显、空间信息量丰富、分辨率高的遥感图像的处理效果较差,易造成图像细节模糊、纹理信息丢失等。

六、快速算法

中值滤波的快速算法一般采用以下三种方式:

直方图数据修正法

样本值二进制表示逻辑判断法

数字和模拟的选择网络法

七、总结

中值滤波是一种有效的非线性信号处理技术,特别适用于消除椒盐噪声等孤立噪声,并保护图像边缘。尽管在某些复杂图像中可能存在局限性,但其简单的算法和高效的性能使其在数字信号处理领域得到广泛应用。

中值滤波得到图像背景

原始视频

在这里插入图片描述

我们随机取出 25 帧,用中值滤波计算出其中值,滤掉移动的汽车(异常点),得到背景

import numpy as np
import cv2

# 打开视频
cap = cv2.VideoCapture('./video.mp4')

# 随机选择25帧
frameIds = cap.get(cv2.CAP_PROP_FRAME_COUNT) * np.random.uniform(size=25)

# 将选定的帧存储在数组中
frames = []
for fid in frameIds:
    cap.set(cv2.CAP_PROP_POS_FRAMES, fid)
    ret, frame = cap.read()
    frames.append(frame)

# 计算沿时间轴的中值
medianFrame = np.median(frames, axis=0).astype(dtype=np.uint8)

# 显示中值帧
cv2.imshow('frame', medianFrame)
cv2.waitKey(0)

看看效果

在这里插入图片描述
还是非常的 nice,过滤的很干净

移动侦测

前景减去背景,就可以得到移动的目标

import numpy as np
import cv2

# 读取视频
cap = cv2.VideoCapture('./video.mp4')

# 随之选择25帧
frameIds = cap.get(cv2.CAP_PROP_FRAME_COUNT) * np.random.uniform(size=25)

# 将选定的帧存储在数组中
frames = []
for fid in frameIds:
    cap.set(cv2.CAP_PROP_POS_FRAMES, fid)
    ret, frame = cap.read()
    frames.append(frame)

# 计算沿时间轴的中值
medianFrame = np.median(frames, axis=0).astype(dtype=np.uint8)

# 显示中值帧
cv2.imshow('frame', medianFrame)
cv2.waitKey(0)

# 重置帧号为0
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)

# 转换背景到灰度
grayMedianFrame = cv2.cvtColor(medianFrame, cv2.COLOR_BGR2GRAY)

# 循环所有帧
ret = True
# index = 0

while ret:
  # 读取帧
  ret, frame = cap.read()
  
  # 将当前帧转换为灰度
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
  
  # 计算当前帧和中间帧的绝对差值
  dframe = cv2.absdiff(frame, grayMedianFrame)
  
  # 二值化
  th, dframe = cv2.threshold(dframe, 30, 255, cv2.THRESH_BINARY)
  
  # 显示
  cv2.imshow('frame', dframe)
  # cv2.imwrite(f"./images1/{index}.jpg", dframe)
  # index+=1
  cv2.waitKey(20)

# 释放视频对象
cap.release()

# 关闭所有窗口
cv2.destroyAllWindows()

输入视频
在这里插入图片描述
输出移动前景
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/700716.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MATLAB算法实战应用案例精讲-【数模应用】多分类Logit分析(附python、R语言和MATLAB代码实现)

目录 算法原理 成对类别有序logit 簇族数据中的超散布性 条件独立性检验 SPSS-有序多分类Logistic回归 SPSSAU 参照项设置 案例应用 代码实现 R语言 逻辑回归 决策树 随机森林 支持向量机 评价分类的准确性 MATLAB python 算法原理 成对类别有序logit libr…

maven基本操作和配置(idea版基础版)

写在前面:为一位朋友写的一个博客,有需要都可以查看! 一、maven是什么? 一句话:管理依赖工具,统一项目结构便于开发,把项目开发和管理的过程抽象成对象模型来管理(pom模型&#xf…

Milvus 2.4 向量库安装部署

1、linux 已有docker环境 2、安装fio命令 yum install -y fio 2、mkdir test-data fio --rwwrite --ioenginesync --fdatasync1 --directorytest-data --size2200m --bs2300 --namemytest ctrlc 3、lscpu 4、docker -v 6、安装docker compose组件 yum -y install python3-…

八、C语言:操作符详解

一、移位操作符 1.1左移操作 左边丢弃,右边补0 1.2右移操作 算数右移:右边丢弃,左边补原符号位 逻辑右移:右边丢弃,左边补0 int main() {int a -1;int b a >> 1;printf("b%d\n",b);return 0; } 原码…

贪吃蛇小游戏简单制作-C语言

文章目录 游戏背景介绍实现目标适合人群所需技术浅玩Window API什么是API控制台程序窗口大小,名称设置 Handle(句柄)获取句柄 坐标结构体设置光标位置 光标属性获取光标属性设置光标属性 按键信息获取 贪吃蛇游戏设计游戏前的初始化设置窗口的大小和名称本地化设置 宽字符Waht …

采用PHP开发的一套(项目源码)医疗安全(不良)事件报告系统源码:统计分析,持续整改,完成闭环管理

采用PHP开发的一套(项目源码)医疗安全(不良)事件报告系统源码:统计分析,持续整改,完成闭环管理 医疗安全确实是医疗领域中不容忽视的重要问题。医院不良安全事件,即医疗质量安全不良…

宋街宣传活动-循环利用,绿色生活

善于善行回收团队是一支致力于推动环保事业,积极倡导和实践绿色生活的志愿者队伍。我们的宗旨是通过回收再利用,减少资源浪费,降低环境污染,同时提高公众的环保意识,共同构建美丽和谐的家园。 善于善行志愿团队于2024年…

免费、无广告、界面简洁、简单好用的轻量级思维导图软件

一、简介 1、一款免费、无广告、界面简洁、简单好用的轻量级思维导图软件。它目前支持 Windows、MacOS 平台。其中 Windows 版大小在 104MB 左右(UWP 应用),Mac 版大小在 167MB 左右。 二、下载 1、下载地址: MindAtom官网&#…

【保姆级讲解下QT6.3】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

用户和权限

Linux的root用户 无论是Windows、MacOS、Linux均采用多用户的管理模式进行权限管理 超级管理员: root用户拥有最大的系统操作权限(不建议长期使用root用户,避免带来系统损坏)普通用户的权限: 一般在其HOME目录内是不受限的,在HOME目录外仅有只读和执行权限&#x…

go-zero整合Excelize并实现Excel导入导出

go-zero整合Excelize并实现Excel导入导出 本教程基于go-zero微服务入门教程,项目工程结构同上一个教程。 本教程主要实现go-zero框架整合Excelize,并暴露接口实现Excel模板下载、Excel导入、Excel导出。 go-zero微服务入门教程:https://blo…

【深度学习】AI换脸,EasyPhoto: Your Personal AI Photo Generator【一】

论文:https://arxiv.org/abs/2310.04672 文章目录 摘要IntroductionTraining Process3 推理过程3.1 面部预处理3.3 第二扩散阶段3.4 多用户ID 4 任意ID5 实验6 结论 下篇文章进行实战。 摘要 稳定扩散Web UI(Stable Diffusion Web UI,简称…

MYSQL八、MYSQL的SQL优化

一、SQL优化 sql优化是指:通过对sql语句和数据库结构的调整,来提高数据库查询、插入、更新和删除等操作的性能和效率。 1、插入数据优化 要一次性往数据库表中插入多条记录: insert into tb_test values(1,tom); insert into tb_tes…

CyberDAO:引领Web3时代的DAO社区文化

致力于Web3研究和孵化 CyberDAO自成立以来,致力于推动Web3研究和孵化,吸引了来自技术、资本、商业、应用与流量等领域的上千名热忱成员。我们为社区提供多元的Web3产品和商业机会,触达行业核心,助力成员捕获Web3.0时代的红利。 目…

远程链接服务 ssh

① 指定用户身份登录 ssh root10.36.105.100 ssh jim10.36.105.100 ② 不登陆远程执行命令 ssh root10.36.105.100 ls /opt ③ 远程拷贝 scp -r // 拷贝目录 -p // 指定端口 将本地文件拷贝给远程主机 scp -r /opt/test1 10.36.105.100:/tmp/// 将本…

Windows电脑清理C盘内存空间

ps:过程截图放在篇末 一、%tmp%文件 win R键呼出运行窗口,输入 %tmp% 自动进入tmp文件夹,ctrl A全选删除 遇到权限不足,正在运行,丢失的文件直接跳过即可 二、AppData文件夹 1、pipcache 在下列路径下面&…

小目标检测篇 | YOLOv8改进之空间上下文感知模块SCAM + 超轻量高效动态上采样DySample

前言:Hello大家好,我是小哥谈。小目标检测是计算机视觉领域中的一个研究方向,旨在从图像或视频中准确地检测和定位尺寸较小的目标物体。相比于常规目标检测任务,小目标检测更具挑战性,因为小目标通常具有低分辨率、低对比度和模糊等特点,容易被背景干扰或遮挡。本篇文章就…

Unity 实现WebSocket 简单通信——客户端

创建连接 ClientWebSocket socket new ClientWebSocket(); string url $"ws://{ip}:{port}"; bool createUri Uri.TryCreate(url, UriKind.RelativeOrAbsolute, out Uri uri); if (createUri) {var task socket.ConnectAsync(uri, CancellationToken.None);task…

django学习入门系列之第二点《浏览器能识别的标签1》

文章目录 文件的编码(head)网站表头信息(head)标题&#xff08;body&#xff09;div和span往期回顾 文件的编码(head) <!--浏览器会以"UTF-8"这种编码来读取文件--> <meta charset"UTF-8">网站表头信息(head) <title>Title</title&…

Android帧绘制流程深度解析 (一)

Android帧绘制技术有很多基础的知识&#xff0c;比如多buffer、vsync信号作用等基础知识点很多笔记讲的已经很详细了&#xff0c;我也不必再去总结&#xff0c;所以此处不再过多赘述安卓帧绘制技术&#xff0c;基础知识这篇文章总结的很好&#xff0c;一文读懂"系列&#…