【网络编程开发】11.IO模型 12.IO多路复用

11.IO模型

什么是IO:

IO 是 Input/Output 的缩写,指的是输入和输出。在计算机当中,IO 操作通常指将数据从一个设备或文件中读取到计算机内存中,或将内存中的数据写入设备或文件中。这些设备可以包括硬盘驱动器、网卡、键盘、屏幕等。

通常用户进程中的一个完整I/O分为两个阶段:
用户进程空间→内核空间
内核空间→设备空间
I/O分为内存I/O、网络I/O和磁盘I/O三种

IO操作的两个阶段

Linux中进程无法直接操作I/O设备,其必须通过系统调用请求内核来协助完成I/O操作。
内核会为每个I/O设备维护一个缓冲区。
对于一个输入操作来说,进程I/O系统调用后,内核会先看缓冲区中有没有相应的缓存数据,没有的话再到设备(比如网卡设备)中读取(因为设备I/O一般速度较慢,需要等待);
内核缓冲区有数据则直接复制到用户进程空间。
所以,对于一个网络输入操作通常包括两个不同阶段:

  1. 等待网络数据到达网卡,把数据从网卡读取到内核缓冲区,准备好数据。
  2. 从内核缓冲区复制数据到用户进程空间。

网络I/O的本质是对socket的读取,socket在Linux系统中被抽象为流,I/O可以理解为对流的操作。
网络I/O的模型可分为两种:

  • 异步I/O(asynchronous I/O)
  • 同步I/O(synchronous I/O)

同步I/O又包括

  • 阻塞I/O(blocking I/O)
  • 非阻塞I/O(non-blocking I/O)
  • 多路复用I/O(multiplexing I/O)
  • 信号驱动I/O(signal-driven I/O)

强调一下:信号驱动I/O属于同步I/O,原因往后看。
信号驱动I/O和异步I/O只作概念性的讲解,不作为学习重点。

五种I/O模型

阻塞I/O(blocking I/O)

对于一个套接字上的输入操作,第一步通常涉及等待数据从网络中到达,当所有等待分组到达时,它被复制到内核中的某个缓冲区。第二步是把数据从内核缓冲区复制到应用程序缓冲区。
同步阻塞I/O模型是最常用、最简单的模型。在Linux中,默认情况下,所有套接字都是阻塞的。下面我们以阻塞套接字的recvfrom的调用图来说明阻塞,如图所示
在这里插入图片描述

非阻塞I/O(non-blocking I/O)

非阻塞的recvform系统调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个errorEAGAINEWOULDBLOCK)。
进程在返回之后,可以先处理其他的业务逻辑,稍后再发起recvform系统调用。
采用轮询的方式检查内核数据,直到数据准备好。再拷贝数据到进程,进行数据处理。
在Linux下,可以通过设置套接字选项使其变为非阻塞。非阻塞的套接字的recvfrom操作如图所示
在这里插入图片描述
可以看到前三次调用recvfrom请求时,并没有数据返回,内核返回errno(EWOULDBLOCK),并不会阻塞进程。
当第四次调用recvfrom时,数据已经准备好了,于是将它从内核空间拷贝到程序空间,处理数据。
在非阻塞状态下,I/O执行的等待阶段并不是完全阻塞的,但是第二个阶段依然处于一个阻塞状态(调用者将数据从内核拷贝到用户空间,这个阶段阻塞)。

多路复用I/O(multiplexing I/O)

I/O多路复用的好处在于单个进程就可以同时处理多个网络连接的I/O。它的基本原理是不再由应用程序自己监视连接,而由内核替应用程序监视文件描述符。
以select函数为例,当用户进程调用了select,那么整个进程会被阻塞,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好,select就会返回。
这个时候用户进程再调用read操作,将数据从内核拷贝到用户进程,如下图所示。
在这里插入图片描述

信号驱动I/O(signal-driven I/O)

该模型允许socket进行信号驱动I/O,并注册一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个SIGIO信号,可以在信号处理函数中调用I/O操作函数处理数据,如图所示
在这里插入图片描述
注意:虽然信号驱动IO在注册完信号处理函数以后,就可以做其他事情了。但是第二阶段拷贝数据的过程当中进程依然是被阻塞的,而后要介绍的异步IO是完全不会阻塞进程的,所以信号驱动虽然具有异步的特点,但依然属于异步IO

异步I/O(asynchronous I/O)

相对于同步I/O,异步I/O不是按顺序执行。用户进程进行aio_read系统调用之后,就可以去处理其他逻辑了,无论内核数据是否准备好,都会直接返回给用户进程,不会对进程造成阻塞。这是因为aio_read只向内核递交申请,并不关心有没有数据。
等到数据准备好了,内核直接复制数据到进程空间,然后内核向进程发送通知,此时数据已经在用户空间了,可以对数据进行处理。
在这里插入图片描述

五种I/O模型比较

在这里插入图片描述
前四种I/O模型都是同步I/O操作,它们的区别在于第一阶段,而第二阶段是一样的:在数据从内核复制到应用缓冲区期间(用户空间),进程阻塞于recvfrom调用。
相反,异步I/O模型在等待数据和接收数据的这两个阶段都是非阻塞的,可以处理其他的逻辑,用户进程将整个I/O操作交由内核完成,内核完成后会发送通知。在此期间,用户进程不需要检查I/O操作的状态,也不需要主动拷贝数据。
在了解了Linux的I/O模型之后,我们就可以进行服务器设计了。

12.IO多路复用

I/O多路复用的好处在于单个进程就可以同时处理多个网络连接的I/O。它的基本原理是不再由应用程序自己监视连接,而由内核替应用程序监视文件描述符。

在Linux系统中,select、poll和epoll是三种常用的I/O多路复用技术,它们用于处理多个I/O流,以实现高效的并发服务器设计。

特性select函数poll函数epoll函数族
支持平台几乎所有类Unix系统Unix及类Unix系统主要为Linux系统
数据结构位图(限制文件描述符数量)链表(无文件描述符数量限制)红黑树(高效管理事件)
文件描述符限制通常最多1024个无限制无限制
拷贝开销每次调用时拷贝整个集合每次调用时拷贝整个集合通过回调机制,避免拷贝
返回就绪描述符需要遍历所有描述符识别就绪状态直接返回就绪状态的描述符高效返回只包含就绪事件的描述符
并发性能低至中等(因位图扫描)中等(因链表扫描)高(高效的事件通知和数据结构)
触发模式不支持不支持支持水平触发和边缘触发
API复杂度简单直观类似select但更灵活功能丰富但使用相对复杂
适用场景小规模并发服务器或客户端中规模并发服务器大规模并发服务器,尤其是网络服务

select函数

  1. 原型

    #include <sys/select.h>
    int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
    
  2. 功能:监视文件描述符集合,等待其中任意一个文件描述符准备好进行I/O操作。

  3. 参数

    • nfds:文件描述符集合中最大的文件描述符值加1。
    • readfds:需要监视可读状态的文件描述符集合。
    • writefds:需要监视可写状态的文件描述符集合。
    • exceptfds:需要监视异常状态的文件描述符集合。
    • timeout:设置select函数的超时时间。
      • NULL,永久阻塞。
      • 0,非阻塞。
  4. 返回值

    • 成功:返回准备好的文件描述符个数。
    • 超时:返回0。
    • 出错:返回-1,并设置errno。
  5. fd_set:

    • 表示文件描述符集合的数据结构
    • 在fd_set中,每个文件描述符都对应一个位,如果该位为1,则表示对应的文件描述符处于准备好的状态;如果该位为0,则表示对应的文件描述符未准备好。
    • fd_set提供了一些宏操作来方便地对文件描述符集合进行操作:
      • FD_ZERO(fd_set *set):清空文件描述符集合。
      • FD_SET(int fd, fd_set *set):将指定的文件描述符添加到集合中。
      • FD_CLR(int fd, fd_set *set):从集合中移除指定的文件描述符。
      • FD_ISSET(int fd, fd_set *set):检查指定的文件描述符是否在集合中。
      • FD_COPY(fd_set *src, fd_set *dst):复制源文件描述符集合到目标文件描述符集合。
  6. struct timeval

    • struct timeval {
          long    tv_sec;         /* 秒 */
          long    tv_usec;        /* 微秒 */
      };
      

select实现多路复用

sever.c

#include "net.h" 
#include <sys/select.h> 
#define MAX_SOCK_FD 1024 // 定义最大文件描述符数量为1024

int main(int argc, char *argv[])
{
	int i, ret, fd, newfd; 
	fd_set set, tmpset; 
	Addr_in clientaddr;
	socklen_t clientlen = sizeof(Addr_in); // 定义客户端地址长度clientlen
	/*检查参数,小于3个 直接退出进程*/
	Argment(argc, argv);
	/*创建已设置监听模式的套接字*/
	fd = CreateSocket(argv);

	FD_ZERO(&set);
	FD_ZERO(&tmpset);
	FD_SET(fd, &set);
	while(1){ 
		tmpset = set;
		if( (ret = select(MAX_SOCK_FD, &tmpset, NULL, NULL, NULL)) < 0) // 调用select函数监听文件描述符集合tmpset中的文件描述符
			ErrExit("select"); 
		if(FD_ISSET(fd, &tmpset) ){
			/*接收客户端连接,并生成新的文件描述符*/
			if( (newfd = accept(fd, (Addr *)&clientaddr, &clientlen) ) < 0) 
				perror("accept");
			printf("[%s:%d]已建立连接\n", 
					inet_ntoa(clientaddr.sin_addr), ntohs(clientaddr.sin_port)); // 输出客户端地址和端口号
			FD_SET(newfd, &set); // 将新的文件描述符加入文件描述符集合set
		}else{ 
			for(i = fd + 1; i < MAX_SOCK_FD; i++){ 
				if(FD_ISSET(i, &tmpset)){ 
					if( DataHandle(i) <= 0){ 
						if( getpeername(i, (Addr *)&clientaddr, &clientlen) )
							perror("getpeername"); 
						printf("[%s:%d]断开连接\n", inet_ntoa(clientaddr.sin_addr),ntohs(clientaddr.sin_port)); // 输出客户端地址和端口号
						FD_CLR(i, &set); // 从文件描述符集合set中移除文件描述符i
					}
				}
			}
		}
	}
	return 0; // 程序正常结束,返回0
}

socket.c

#include "net.h"

void Argment(int argc, char *argv[]){
	if(argc < 3){
		fprintf(stderr, "%s<addr><port>\n", argv[0]);
		exit(0);
	}
}
int CreateSocket(char *argv[]){
	/*创建套接字*/
	int fd = socket(AF_INET, SOCK_STREAM, 0);
	if(fd < 0)
		ErrExit("socket");
	/*允许地址快速重用*/
	int flag = 1;
	if( setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof(flag) ) )
		perror("setsockopt");
	/*设置通信结构体*/
	Addr_in addr;
	bzero(&addr, sizeof(addr) );
	addr.sin_family = AF_INET;
	addr.sin_port = htons( atoi(argv[2]) );
	/*绑定通信结构体*/
	if( bind(fd, (Addr *)&addr, sizeof(Addr_in) ) )
		ErrExit("bind");
	/*设置套接字为监听模式*/
	if( listen(fd, BACKLOG) )
		ErrExit("listen");
	return fd;
}
int DataHandle(int fd){
	char buf[BUFSIZ] = {};
	Addr_in peeraddr;
	socklen_t peerlen = sizeof(Addr_in);
	if( getpeername(fd, (Addr *)&peeraddr, &peerlen) )
		perror("getpeername");
	int ret = recv(fd, buf, BUFSIZ, 0);
	if(ret < 0)
		perror("recv");
	if(ret > 0){
		printf("[%s:%d]data: %s\n", 
				inet_ntoa(peeraddr.sin_addr), ntohs(peeraddr.sin_port), buf);
	}
	return ret;
}

net.h

#ifndef _NET_H_
#define _NET_H_

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <strings.h>
#include <errno.h>

typedef struct sockaddr Addr;
typedef struct sockaddr_in Addr_in;
#define BACKLOG 5
#define ErrExit(msg) do { perror(msg); exit(EXIT_FAILURE); } while(0)

void Argment(int argc, char *argv[]);
int CreateSocket(char *argv[]);
int DataHandle(int fd);

#endif

在这里插入图片描述

成功建立连接

poll 函数

与select函数的功能类似

  1. 原型

    #include <poll.h>
    int poll(struct pollfd *fds, nfds_t nfds, int timeout);
    
  2. 功能:监视一组文件描述符的I/O状态,等待它们中的一个或多个变为可读、可写或异常状态。

  3. 参数

    • fds:一个指向pollfd结构体数组的指针,该数组包含了需要监视的文件描述符及其对应的事件。
    • nfdsfds数组中的元素个数。
    • timeout:等待的最长时间(以毫秒为单位),如果设置为0,则表示立即返回;如果设置为负数,则表示无限期等待。
  4. 返回值

    • 如果成功,返回发生事件的文件描述符个数;
    • 如果超时,返回0;
    • 如果出错,返回-1。
  5. struct pollfd

    • struct pollfd {
          int fd;         // 文件描述符
          short events;   // 注册的事件
          short revents;  // 返回的事件
      };
      
    • fd:这是文件描述符,即需要被监视的句柄。

    • events:这是一个位掩码,定义了我们关心的文件描述符的事件类型。常用的事件类型有:

      • POLLIN:表示文件描述符可读。
      • POLLOUT:表示文件描述符可写。
      • POLLPRI:表示文件描述符有紧急数据(带外数据)可读。
      • POLLERR:表示文件描述符发生错误。
      • POLLHUP:表示文件描述符挂起。
    • revents:这是一个输出参数,当poll返回时,它指出了文件描述符上实际发生了哪些事件。

  6. nfds_t:

    • typedef unsigned long int nfds_t;
      

poll实现多路复用

sever.c

#include "net.h"
#include <poll.h>

#define MAX_SOCK_FD 1024
int main(int argc, char *argv[])
{
	int i, j, fd, newfd;
	nfds_t nfds = 1;
	struct pollfd fds[MAX_SOCK_FD] = {};
	Addr_in addr;
	socklen_t addrlen = sizeof(Addr_in);
	/*检查参数,小于3个 直接退出进程*/
	Argment(argc, argv);
	/*创建已设置监听模式的套接字*/
	fd = CreateSocket(argv);
	fds[0].fd = fd;
	fds[0].events = POLLIN;
	while(1){
		if( poll(fds, nfds, -1) < 0)
			ErrExit("poll");
		for(i = 0; i < nfds; i++){
			/*接收客户端连接,并生成新的文件描述符*/
			if(fds[i].fd == fd && fds[i].revents & POLLIN){
				if( (newfd = accept(fd, (Addr *)&addr, &addrlen) ) < 0)
					perror("accept");
				fds[nfds].fd = newfd;
				fds[nfds++].events = POLLIN;
				printf("[%s:%d][nfds=%lu] connection successful.\n", 
						inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), nfds);
			}
			/*处理客户端数据*/
			if(i > 0 && fds[i].revents & POLLIN){
				if(DataHandle(fds[i].fd) <= 0){
					if( getpeername(fds[i].fd, (Addr *)&addr, &addrlen) < 0)
						perror("getpeername");
					printf("[%s:%d][fd=%d] exited.\n", 
							inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), fds[i].fd);
					close(fds[i].fd);
					for(j=i; j<nfds-1; j++)
						fds[j] = fds[j+1];
					nfds--;
					i--;
				}
			}
		}
	}
	close(fd);
	return 0;
}

socket.c

#include "net.h"

void Argment(int argc, char *argv[]){
	if(argc < 3){
		fprintf(stderr, "%s<addr><port>\n", argv[0]);
		exit(0);
	}
}
int CreateSocket(char *argv[]){
	/*创建套接字*/
	int fd = socket(AF_INET, SOCK_STREAM, 0);
	if(fd < 0)
		ErrExit("socket");
	/*允许地址快速重用*/
	int flag = 1;
	if( setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof(flag) ) )
		perror("setsockopt");
	/*设置通信结构体*/
	Addr_in addr;
	bzero(&addr, sizeof(addr) );
	addr.sin_family = AF_INET;
	addr.sin_port = htons( atoi(argv[2]) );
	/*绑定通信结构体*/
	if( bind(fd, (Addr *)&addr, sizeof(Addr_in) ) )
		ErrExit("bind");
	/*设置套接字为监听模式*/
	if( listen(fd, BACKLOG) )
		ErrExit("listen");
	return fd;
}
int DataHandle(int fd){
	char buf[BUFSIZ] = {};
	Addr_in peeraddr;
	socklen_t peerlen = sizeof(Addr_in);
	if( getpeername(fd, (Addr *)&peeraddr, &peerlen) )
		perror("getpeername");
	int ret = recv(fd, buf, BUFSIZ, 0);
	if(ret < 0)
		perror("recv");
	if(ret > 0){
		printf("[%s:%d]data: %s\n", 
				inet_ntoa(peeraddr.sin_addr), ntohs(peeraddr.sin_port), buf);
	}
	return ret;
}

net.h

#ifndef _NET_H_
#define _NET_H_

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <strings.h>
#include <errno.h>

typedef struct sockaddr Addr;
typedef struct sockaddr_in Addr_in;
#define BACKLOG 5
#define ErrExit(msg) do { perror(msg); exit(EXIT_FAILURE); } while(0)

void Argment(int argc, char *argv[]);
int CreateSocket(char *argv[]);
int DataHandle(int fd);


#endif

在这里插入图片描述

成功实现多路复用

epoll函数族

epoll函数族用于高效的I/O事件管理,特别适用于高并发服务器应用

头文件: #include <sys/epoll.h>

  1. epoll_create:

    • int epoll_create(int size);
      
    • 功能:创建一个epoll实例,并返回一个文件描述符作为该epoll实例的标识。

    • 参数size:之前用于定义事件队列的大小,但在Linux 2.6以后的版本中已被忽略。通常设置为0。

    • 返回值

      • 成功:返回一个非负的文件描述符。
      • 失败:返回-1,并设置errno
  2. epoll_ctl:

    • int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
      
    • 功能:向epoll实例中添加、修改或删除文件描述符及其相关事件。

    • 参数

      • epfd:epoll实例的文件描述符。
      • op:操作类型,可以是EPOLL_CTL_ADD(添加新的文件描述符)、EPOLL_CTL_MOD(修改已注册的文件描述符的事件)或EPOLL_CTL_DEL(删除一个文件描述符)。
      • fd:要操作的文件描述符。
      • event:指向epoll_event结构的指针,用于指定事件类型和文件描述符的数据。
    • 返回值

      • 成功:返回0。
      • 失败:返回-1,并设置errno
  3. epoll_wait:

    • int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
      
    • 功能:阻塞等待已注册的文件描述符上的事件发生。

    • 参数

      • epfd:epoll实例的文件描述符。
      • events:指向epoll_event结构体数组的指针,用于存储发生的事件。
      • maxevents:可以接收的事件数量的最大值。
      • timeout:超时时间(以毫秒为单位),决定函数的阻塞行为。设置为0立即返回,设置为-1则无限期阻塞。
    • 返回值

      • 成功:返回就绪事件的个数。
      • 超时:返回0。
      • 失败:返回-1,并设置errno

epoll实现多路复用

sever.c

#include "net.h"
#include <sys/epoll.h>

#define MAX_SOCK_FD 1024

int main(int argc, char *argv[])
{
	int i, nfds, fd, epfd, newfd;
	Addr_in addr;
	socklen_t addrlen = sizeof(Addr_in);
	struct epoll_event tmp, events[MAX_SOCK_FD] = {};
	/*检查参数,小于3个 直接退出进程*/
	Argment(argc, argv);
	/*创建已设置监听模式的套接字*/
	fd = CreateSocket(argv);

	if( (epfd = epoll_create(1)) < 0)
		ErrExit("epoll_create");
	tmp.events = EPOLLIN;
	tmp.data.fd = fd;
	if( epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &tmp) )
		ErrExit("epoll_ctl");

	while(1) {
		if( (nfds = epoll_wait(epfd, events, MAX_SOCK_FD, -1) ) < 0)
			ErrExit("epoll_wait");
		printf("nfds = %d\n", nfds);

		for(i = 0; i < nfds; i++) {
			if(events[i].data.fd == fd){
				/*接收客户端连接,并生成新的文件描述符*/
				if( (newfd = accept(fd, (Addr *)&addr, &addrlen) ) < 0)
					perror("accept");
				printf("[%s:%d] connection.\n", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port) );
				tmp.events = EPOLLIN;
				tmp.data.fd = newfd;
				if( epoll_ctl(epfd, EPOLL_CTL_ADD, newfd, &tmp) )
					ErrExit("epoll_ctl");
			}else{/*处理客户端数据*/
				if(DataHandle(events[i].data.fd) <= 0){
					if( epoll_ctl(epfd, EPOLL_CTL_DEL, events[i].data.fd, NULL) )
						ErrExit("epoll_ctl");
					if( getpeername(events[i].data.fd, (Addr *)&addr, &addrlen) )
						perror("getpeername");
					printf("[%s:%d] exited.\n", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port) );
					close(events[i].data.fd);
				}
			}
		}
	}
	close(epfd);
	close(fd);
	return 0;
}

socket.c

#include "net.h"

void Argment(int argc, char *argv[]){
	if(argc < 3){
		fprintf(stderr, "%s<addr><port>\n", argv[0]);
		exit(0);
	}
}
int CreateSocket(char *argv[]){
	/*创建套接字*/
	int fd = socket(AF_INET, SOCK_STREAM, 0);
	if(fd < 0)
		ErrExit("socket");
	/*允许地址快速重用*/
	int flag = 1;
	if( setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof(flag) ) )
		perror("setsockopt");
	/*设置通信结构体*/
	Addr_in addr;
	bzero(&addr, sizeof(addr) );
	addr.sin_family = AF_INET;
	addr.sin_port = htons( atoi(argv[2]) );
	/*绑定通信结构体*/
	if( bind(fd, (Addr *)&addr, sizeof(Addr_in) ) )
		ErrExit("bind");
	/*设置套接字为监听模式*/
	if( listen(fd, BACKLOG) )
		ErrExit("listen");
	return fd;
}
int DataHandle(int fd){
	char buf[BUFSIZ] = {};
	Addr_in peeraddr;
	socklen_t peerlen = sizeof(Addr_in);
	if( getpeername(fd, (Addr *)&peeraddr, &peerlen) )
		perror("getpeername");
	int ret = recv(fd, buf, BUFSIZ, 0);
	if(ret < 0)
		perror("recv");
	if(ret > 0){
		printf("[%s:%d]data: %s\n", 
				inet_ntoa(peeraddr.sin_addr), ntohs(peeraddr.sin_port), buf);
	}
	return ret;
}

net.h

#ifndef _NET_H_
#define _NET_H_

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <strings.h>
#include <errno.h>

typedef struct sockaddr Addr;
typedef struct sockaddr_in Addr_in;
#define BACKLOG 5
#define ErrExit(msg) do { perror(msg); exit(EXIT_FAILURE); } while(0)

void Argment(int argc, char *argv[]);
int CreateSocket(char *argv[]);
int DataHandle(int fd);


#endif

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/698744.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FiRa标准UWB MAC实现(三)——距离如何获得?

继续前期FiRa MAC相关介绍,将FiRa UWB MAC层相关细节进一步进行剖析,介绍了UWB技术中最重要的一个点,高精度的距离是怎么获得的,具体使用的测距方法都有哪些,原理又是什么。为后续FiRa UWB MAC的实现进行铺垫。 3、测距方法 3.1 SS-TWR SS-TWR为Single-Sided Two-Way Ra…

01 Linux网络设置

目录 1.1 查看及测试网络 1.1.1 查看网络配置 1. 查看网络接口地址 1. 查看活动的网络接口设备 2. 查看指定的网络接口信息 2. 查看主机名称 3. 查看路由表条目 4. 查看网络连接情况 1.1.2 测试网络连接 1. 测试网络连通性 2. 跟踪数据包的路由途径 3. 测试DNS域名解析 1.2 设…

[leetcode]将二叉搜索树转化为排序的双向链表

. - 力扣&#xff08;LeetCode&#xff09; /* // Definition for a Node. class Node { public:int val;Node* left;Node* right;Node() {}Node(int _val) {val _val;left NULL;right NULL;}Node(int _val, Node* _left, Node* _right) {val _val;left _left;right _rig…

小型气象站:现代气象监测的便携化解决方案

TH-QC12在气象监测领域&#xff0c;技术的不断创新和进步推动了监测设备的多样化和便携化。小型气象站作为这一趋势下的产物&#xff0c;以其体积小、功能全、操作简便等特点&#xff0c;受到了广泛的关注和应用。 小型气象站的技术特点 小型气象站集成了多种气象传感器&…

ChatGPT做2024高考数学题能得多少分?

文章目录 1. 前言2. AI答题2.1 第一部分试题图2.2 第二部分试题图2.3 第三部分试题图 3. 结论 1. 前言 2024年高考基本上落下帷幕&#xff08;特殊省份除外&#xff09;&#xff0c;我们关注下曾经“最喜欢”的数学用 AI 能得多少分&#xff1f;当前采用 ChatGPT-4o 模型&…

说说医院网间文件传输的进化之路

作为一家大型综合医院的信息科管理人员&#xff0c;我亲眼见证了跨网间文件交换技术的不断进步。每一个阶段都伴随着不同的挑战和惊喜&#xff0c;以下是我的一些经历和感悟&#xff0c;希望能对同行们有所帮助。 在2000年代初期&#xff0c;我们医院采用物理隔离和手动传输的方…

固态硬盘格式化后能恢复数据吗?四种数据恢复方法,赶紧收藏!

格式化的固态硬盘能恢复吗&#xff1f;硬盘是电脑里面的储存配件&#xff0c;虽然说当前种类比较多&#xff0c;但是在平常使用的过程中&#xff0c;也会遇到一些数据丢失的问题。而当前造成数据丢失的很多&#xff0c;例如&#xff1a;手动误删、清空回收站、磁盘格式化等。 …

【ppyoloe+】19届智能车完全模型组非官方基线

基于十九届智能车百度完全模型组线上赛baseline修改 调整参数最高能到0.989吧 一、环境准备 1.安装PaddleDetection In [1] # 解压PaddleDetection压缩包 %cd /home/aistudio/data/data267567 !unzip -q PaddleDetection-release-2.6.zip -d /home/aistudio /home/aistud…

工业无线通信解决方案,企业在进行智能化升级改造

某大型制造企业在进行智能化升级改造,需要将分布在各个车间的数控机床、自动化生产线、AGV小车等设备连接到云端,实现设备的远程监控、数据采集分析等功能。之前工厂内部是用工业以太网连接,存在布线难、成本高、灵活性差等问题。 在了解客户需求后,我司星创易联的工程师建议客…

等保一体机在中小型企业的应用

等保一体机比较适合中小型企业。大型企业、重点行业过等保现象确实已经十分普遍。因为国家推行等级保护制度&#xff0c;面向的重点就是那些信息系统十分关键、数据价值高的领域&#xff0c;如政府机关、金融、医疗、教育等行业。 但是有一些用户需要满足等保合规要求&#xff…

[图解]企业应用架构模式2024新译本讲解13-服务层1

1 00:00:00,150 --> 00:00:05,030 接下来我们来看服务层模式 2 00:00:06,070 --> 00:00:11,740 这也是领域逻辑类型的最后一个模式 3 00:00:13,700 --> 00:00:17,110 我们前面实际上已经见过了&#xff0c;事务脚本 4 00:00:17,240 --> 00:00:19,900 的时候&…

数据结构基础(基于c++)

数据结构基础&#xff08;基于c&#xff09; 文章目录 数据结构基础&#xff08;基于c&#xff09;前言1. 递归、迭代、时间复杂度、空间复杂度2. 数据结构 数组与链表1. 数组2. 链表3. 动态数组4. 数组与链表对比 前言 参考资料&#xff1a;Hello 算法 (hello-algo.com) 1. 递…

HTML静态网页成品作业(HTML+CSS)—— 小米商城首页网页(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…

基于小波样条框架的一维时间序列信号降噪方法(MATLAB R2018A)

1952年&#xff0c;DUFFIN在研究非调和Fourier级数时引入了Hilbert空间中框架的概念&#xff0c;然而并没有引起很大的反响。1986年&#xff0c;DAUBECHIES研究发现利用框架可以将L2(R)中的函数展开成类似标准正交基的级数&#xff0c;并且用框架研究函数时所需的条件要比用标准…

企业内网安全软件分享,有什么内网安全软件

内网安全&#xff1f; 其实就是网络安全的一种。 什么是内网安全软件&#xff1f; 内网安全软件是企业保障内网安全的一种重要工具。 它主要帮助企业实现对网络设备、应用程序、用户行为等方面的监控和管理&#xff0c;以预防和应对各种网络攻击。 这类软件主要用于对内网中…

每日一题——Python实现PAT乙级1111 对称日(举一反三+思想解读+逐步优化)七千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 代码点评 时间复杂度分析 空间复杂度分析 综上所述&#xff1a; 优化建…

NAT

文章目录 1.NAT是什么2.NAT功能3.NAT优缺点4.NAT作用工作原理5.NAT 静态 动态5.1静态静态配置1.全局模式下设置静态NAT2.接口上设置静态NAT 5.2动态动态配置测试 6.PAT多路复用 PAT NAPT Easyip NAT server6.1PAT端口多路复用PAT作用 1.NAPT配置测试 2.EasyIp配置测试 3.NAT se…

ShardingSphere跨表查询报错

目录 一、场景简介二、报错信息三、SQL四、原因五、解决方法一、调整SQL&#xff0c;不使用子查询方法二、将子查询的SQL独立出来&#xff0c;后续连接逻辑由代码处理 一、场景简介 1、使用ShardingSphere按月份进行分表 2、单月查询正常&#xff08;单表&#xff09; 3、跨…

Mimio安装

mkdir -p /usr/local/develop/minio/bin mkdir -p /usr/local/develop/minio/bin wget https://dl.min.io/server/minio/release/linux-amd64/minio -O /usr/local/develop/minio/bin/minio 编辑脚本 启动脚本 vim /usr/local/develop/minio/start_minio.sh #!/bin/bash # 设…