前言
作为一个非AI技术出身的人工智能产品经理,在转行之前会面对很对自我怀疑。在做了4年人工智能产品经理之后,也做了点总结,主要介绍AI产品经理在设计过程中的一些要点,和互联网产品经理9相似的工作内容就没有刻意的去提,内容如下:
从互联网产品经理转型为AI产品经理,在这一过程我经历了从App手机端交互设计9,到让机器多模式与人交流的设计;2C到2B再到同时兼顾B端C端的转变;产品整理需求文档就能过需求,排开发,到学会去考虑技术边界、环境影响等因素,才能着手设计需求的转变…-路走来痛并快乐着。
结合几年AI项目实践经验,谈谈AI产品经理在具体工作中如何考虑产品设计,给大家分享6点心得
体验层上包括:
- 技术边界VS业务目标; 应用场景;
- 教育成本;
- B端C端兼顾
另外还有需要在设计架构是考虑的⑤设计兜底方案、⑥引擎接入的灵活性
**
**
一、技术边界VS业务目标
在一定的阶段,当技术无法以预期的方式满足产品需求时,AI产品经理要做的事情就是在了解技术边界的前提下,提供最适合的产品解决方案以达到业务目标。
"准确回答用户咨询的问题”是智能客服产品的核心诉求,如何更准确的为用户提供解决方案呢?自然语言处理Q(NLP)技术并不能保证百分百精准理解客户的意图,AI产品经理需要考虑在这样的前提下,怎样设计智能客服产品。
“推荐答案Q”成为解决这一问题的设计方案。在无法准确判定用户的意图时,机器人会根据计算,在给出得分最高答案同时,将与客户问题意图相近的“推荐问题”根据计算分数从高到低排序展示,提供给用户更多选择,已达到解决用户咨询问题的目的。
目前的人脸识别技术9也无法保证100%过滤各类风险,比如:视频攻击、照片攻击,比如双胞胎。于是设计了“异步审核”策略,在人脸比对和活体检测只有风险时,便会采用异步审核流程,用人工检测的方式保证通过率和准确率,保证用户体验,降低业务风险。
二、评估场景因素
当产品初步方案确认后,需要对影响算法正常运行的场景因素进行分析,是否充分评估各类会影响结果的场景因素,决是了产品真正落地的速度。
很多人吐槽过刷脸要求的复杂又难理解,不能戴黑框、光线不能太强、注意避开侧面光、逆光会影响通过,但其实是否能为用户提供更具指导性的告警是考验AI产品经理能力的重要维度,符合核身条件的光线检测9、外部噪音检测、出现多张人脸时提示等,都需要在研发过程中尽充分挖掘,并进行合理的告警分类,考虑是否能用技术手段解决,比如将人脸是否满足检测条件放到前端。
同样,在身份证识别的场景中,金融行业这类对安全要求较高的行业,在证件伪造上都属于零容忍,证件识别除了来基本字段的准确率,误检率、召回率9等关键数据,还需要考虑怎么对遮挡缺角、过期等情况导致的伪造证件进行识别,足够丰宣多样且精准的告警码9,才能满足产品需求,为后续商业化提供技术亮点的支持,
由于目前硬件和算法的种种限制,为了尽量提升用户体验,AI产品经理需要挖掘外部环境可能导致的失败原因,反推算法9同事给出更多维度更细颗粒的错误反馈,以便为用户提供清晰的操作指导,提升用户满意度,
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
AI产品对环境、用户配合度的要求,带来的一个新的问题:“怎样快速直观的教会用户使用”,如果用户不会用、不能用,对产品的落地和推广会带来负面影响。
比如:智能音箱、智能车载设备的兴起,在做软硬一体产品设计的过程中,由于对话是日常人们已经非常熟悉的场景,如何设计自然、“像和真人一样”交谈的交豆,成为AI产品在设计过程中的重点及难点。
例如:用户在初期面对智能音箱9产品时可能会一脸茫然,“我在干什么?"“我要做什么?”,这时候通过屏幕显示的配合(有屏音箱9设计)让用户对产品的功能有所了解,或者通过音箱主动交豆告知用户“你可以这么问我”,“我对这些技能擅长”是产品设计9中细致的考量。
再比如:如果音箱一直在听我们说话,将收录非常多杂乱无章的信息,使得A1系统没有办法很好的理解谁在说话,说了什么,往往需要用户每次与音箱交互时都唤醒,AI在后台被唤醒了,用户是怎么知道的呢?
在我们日常生活中,如果有人对我们说话,往往会叫我们名字,我们往往回复“我在~”。仿照这样的方式,我们对音箱的设计通过灯关不同颜色的反馈或者语音应答9,告诉用户音箱被唤醒了,正在等待你说话。
四、兼顾B端C端体验
在我还是互联网产品经理时期,我关注的重点在C端9用户的需求,而现在AI技术落地对接以B端为主,作为AI产品经理要调整关注焦点,从商务对接阶段开始,就要和B沟通,能带给B端怎么样的业价值,创造多少收益,要依赖产品经理对B端需求的理解,
智能客服系统9是融合B端、C端体验设计9最为突出的平台,智能客服平台9包含“管理系统”+"坐席平台9”+"客户端”三个功能模块。在线客服初衷,是去思考B端商户对客服系统最迫切的需求是什么?
所谓刚需,一是降低客服成本,二是通过沉淀产品业务知识/常见问题,提高服务效率,提升客户满意度,那么就要求智能客服系统做到快速接入/快速投产上线,业务知识批量录入并通过算法实现知识库自我升级,运营数据可视化只等指导运营人员有效管理日常工作。
要实现这些目标,AI产品经理9就需要充分了解B端商户的整体业务,同时也要深入分析客服/客服团队管理人员的日常工作流程/工作中的难点痛点,如若不清楚,整个系统实现出来也只能是中看不中用。
另一个典型案例是“智能质检平台”,质检平台使用语音识别技术QASR、自然语言处理技NLP术9对客服人员服务录音进行处理后,针对必要的项目进行质检9。该系统为客服人员服务情况进行评估提供帮助,并且作为客户问题统计、风险预警及挖掘营销策略的渠道起到不可提到的作用。
在智能质检平台出现之前,客服团队需要大量的人力进行部分录音的抽检,效率低不说,还不能关注到全量数据背后带来的平台问题及因难出现的营销机遇,
这类智能平台在商务沟通前,AI产品经理就需要准备验证数据,落地案例,使用效果等,对B端C端的诉求有清晰的认识,打造客户觉得好用,愿意用,打造B端的用户口碑,为B商户赋能,实现共赢的局面。
以上四点从体验层面介绍了AI产品经理在设计上的思考和执行建议,下面,我将用第五点影响算法的数据限制和第六点上下游调用引擎的灵活便捷上,从整体架构设计9角度做进一步分析。
五、设计兜底方案
这里的“兜底方案”,指除了算法/开发流程/项目进度本身等团队可控的因素外,非团队可控的部学
比如:在人身核验的业务中,证件比对库是否可用是整个流程的关键,所以公安、人行渠道证照调用时间与产品容错率、服务中断率9这些非国队可控因素,必须纳入人脸照片比对流程的设计。例如:工作时间使用人行提供的照片库,非人行工作时间需要使用付要盖面更广、时效性更强的公安身份证9照库进行补充。既要满足业务的比对需求,又要考虑比对结果的各项数据结果不低于业务阈值,避免照片库9不可用带来的业务风险。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的zi yuan得到学习提升
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些P DF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词
- L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节
- L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景
- L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例
- L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习zhi nan已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓