DeepSORT(目标跟踪算法)中自由度决定卡方分布的形状

DeepSORT(目标跟踪算法)中自由度决定卡方分布的形状

flyfish

重要的两个点

自由度决定卡方分布的形状(本文)
马氏距离的平方在多维正态分布下服从自由度为 k 的卡方分布

独立的信息

在统计学中,独立的信息是指数据中的独立变量或值的数量。当我们计算样本统计量(如平均值或方差)时,某些数据点的值可以从其他数据点和统计量中推导出来,因此这些点不再提供独立的信息。

卡方分布是一种统计学上的概率分布,通常用于假设检验,比如检验数据的独立性或适合度。卡方分布描述的是一个变量的值如何分布,特别是当这些变量表示方差或者是两个变量之间的独立性时。它的形状取决于自由度(degree of freedom, df),自由度越高,分布越接近正态分布。

绘制几个不同自由度下的卡方分布

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

# 定义自由度
dfs = [1, 2, 3, 5, 10]

# 设置x轴范围
x = np.linspace(0, 20, 1000)

# 创建图形
plt.figure(figsize=(10, 6))

# 绘制不同自由度的卡方分布曲线
for df in dfs:
    plt.plot(x, stats.chi2.pdf(x, df), label=f'df={df}')

# 添加图例和标签
plt.legend()
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.title('Chi-Square Distribution')
plt.grid(True)

# 显示图形
plt.show()

在这里插入图片描述
卡方分布图:

  1. df=1:分布最偏,右侧有长尾。
  2. df=2:开始向左侧移动,但仍有右侧长尾。
  3. df=3:分布更集中,右侧长尾减弱。
  4. df=5:分布更靠近正态分布,右侧尾巴更短。
  5. df=10:非常接近正态分布,右侧尾巴很短。
    这种图形有助于理解自由度对卡方分布形状的影响。随着自由度增加,卡方分布逐渐向正态分布靠拢。

卡方分布的公式

可以用以下数学表达式来表示:

f ( x ; k ) = 1 2 k / 2 Γ ( k / 2 ) x k / 2 − 1 e − x / 2 f(x; k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2} f(x;k)=2k/2Γ(k/2)1xk/21ex/2

其中:

  • x x x 是卡方变量(取非负值)。
  • k k k 是自由度(degrees of freedom)。
  • Γ \Gamma Γ 是伽玛函数(Gamma function),它是阶乘函数的一种扩展,满足 Γ ( n ) = ( n − 1 ) ! \Gamma(n) = (n-1)! Γ(n)=(n1)! 对于正整数 n n n

伽玛函数 (Gamma function)

伽玛函数是一种特殊函数,它是阶乘函数在非整数值上的扩展。对于一个正整数 n n n,伽玛函数 Γ ( n ) \Gamma(n) Γ(n) 等于 ( n − 1 ) ! (n-1)! (n1)!。伽玛函数的定义是:

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t   d t \Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt Γ(z)=0tz1etdt

z z z 是正整数时,伽玛函数满足 Γ ( n ) = ( n − 1 ) ! \Gamma(n) = (n-1)! Γ(n)=(n1)!

通常自由度等于数据点的数量减去你计算中所涉及的参数数量。

例如:

  1. 样本的平均值计算
  • 你有 n n n 个数据点。
  • 计算平均值需要一个参数(就是这个平均值)。
  • 因此,自由度是 n − 1 n-1 n1
  1. 线性回归
  • 假设你有 n n n 个数据点和两个参数(斜率和截距)。
  • 自由度是 n − 2 n-2 n2

假设我们有5个数据点 x 1 , x 2 , x 3 , x 4 , x 5 x_1, x_2, x_3, x_4, x_5 x1,x2,x3,x4,x5

  1. 计算平均值
    x ˉ = x 1 + x 2 + x 3 + x 4 + x 5 5 \bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} xˉ=5x1+x2+x3+x4+x5
  2. 计算每个数据点的偏差(数据点与平均值的差):
    d 1 = x 1 − x ˉ d_1 = x_1 - \bar{x} d1=x1xˉ
    d 2 = x 2 − x ˉ d_2 = x_2 - \bar{x} d2=x2xˉ
    d 3 = x 3 − x ˉ d_3 = x_3 - \bar{x} d3=x3xˉ
    d 4 = x 4 − x ˉ d_4 = x_4 - \bar{x} d4=x4xˉ
    d 5 = x 5 − x ˉ d_5 = x_5 - \bar{x} d5=x5xˉ
    偏差的和为零:
    d 1 + d 2 + d 3 + d 4 + d 5 = 0 d_1 + d_2 + d_3 + d_4 + d_5 = 0 d1+d2+d3+d4+d5=0

这表明,知道了前4个偏差 d 1 , d 2 , d 3 , d 4 d_1, d_2, d_3, d_4 d1,d2,d3,d4 后,第5个偏差 d 5 d_5 d5 是可以通过前4个偏差计算出来的,因为偏差的总和必须为零:
d 5 = − ( d 1 + d 2 + d 3 + d 4 ) d_5 = - (d_1 + d_2 + d_3 + d_4) d5=(d1+d2+d3+d4)

这说明第5个偏差并不是独立的,它依赖于前4个偏差。

自由度的减少

当我们计算平均值时,我们使用了所有数据点的信息,这个平均值本身是由这些数据点计算出来的,因此在计算方差时,有一个数据点的信息量不再是独立的(因为它可以从其他数据点和平均值推导出来)。这就是为什么在计算方差时,自由度是 n − 1 n-1 n1

无论最后一个数据点是大是小,这个推理过程都成立。因为平均值 x ˉ \bar{x} xˉ 是所有数据点的一个函数,在计算方差时,所有数据点与平均值的偏差和为零:

∑ i = 1 n ( x i − x ˉ ) = 0 \sum_{i=1}^{n} (x_i - \bar{x}) = 0 i=1n(xixˉ)=0

这表明,如果你知道 n − 1 n-1 n1 个偏差,那么最后一个偏差是可以通过前面 n − 1 n-1 n1 个偏差计算出来的。因此,总共有 n − 1 n-1 n1 个独立的信息,这就是我们在计算样本方差时为什么使用 n − 1 n-1 n1 作为分母。

自由度的作用

  1. 调整估计偏差
    使用自由度调整计算可以消除估计过程中的偏差,使得估计结果更加准确。例如,样本方差的计算使用 n − 1 n-1 n1 作为分母,使其成为总体方差的无偏估计。

  2. 反映数据独立性
    自由度表示数据集中独立信息的数量。在统计计算中,自由度反映了可以自由变动的数据点数量,而不受其他数据点或估计参数的约束。

  3. 决定分布形状
    在假设检验中,自由度决定了统计量的分布形状,如卡方分布。不同的自由度会导致分布形状不同,从而影响显著性水平和置信区间的计算。

要深入理解样本方差、总体方差以及无偏估计的概念,首先需要了解一些基础定义和背景知识。让我们逐一解释这些概念。

样本方差、总体方差、无偏估计

总体方差(Population Variance)
总体方差是描述总体数据的离散程度的度量,表示总体数据点与总体均值之间的平均平方偏差。假设总体中有 N N N 个数据点 X 1 , X 2 , … , X N X_1, X_2, \ldots, X_N X1,X2,,XN,总体方差的计算公式为:
σ 2 = 1 N ∑ i = 1 N ( X i − μ ) 2 \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2 σ2=N1i=1N(Xiμ)2
其中, μ \mu μ 是总体的平均值。

样本方差(Sample Variance)
样本方差是从样本数据中估计总体方差的度量,表示样本数据点与样本均值之间的平均平方偏差。假设样本中有 n n n 个数据点 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn,样本方差的计算公式为:
s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 s2=n11i=1n(xixˉ)2
其中, x ˉ \bar{x} xˉ 是样本的平均值。

无偏估计(Unbiased Estimator)

一个估计量是无偏的,如果其期望值等于所要估计的总体参数。即,对于样本方差 s 2 s^2 s2 来说,当它作为总体方差 σ 2 \sigma^2 σ2 的估计时,满足以下条件:
E [ s 2 ] = σ 2 \mathbb{E}[s^2] = \sigma^2 E[s2]=σ2
其中, E \mathbb{E} E 表示期望值。

举例子

使用总体数据 2 , 4 , 6 , 8 , 10 2, 4, 6, 8, 10 2,4,6,8,10 来计算总体方差和样本方差。

总体方差
  1. 计算总体平均值
    μ = 2 + 4 + 6 + 8 + 10 5 = 6 \mu = \frac{2 + 4 + 6 + 8 + 10}{5} = 6 μ=52+4+6+8+10=6
  2. 计算每个数据点的平方偏差
    ( 2 − 6 ) 2 = 16 (2 - 6)^2 = 16 (26)2=16
    ( 4 − 6 ) 2 = 4 (4 - 6)^2 = 4 (46)2=4
    ( 6 − 6 ) 2 = 0 (6 - 6)^2 = 0 (66)2=0
    ( 8 − 6 ) 2 = 4 (8 - 6)^2 = 4 (86)2=4
    ( 10 − 6 ) 2 = 16 (10 - 6)^2 = 16 (106)2=16
  3. 计算总体方差
    σ 2 = 1 5 ( 16 + 4 + 0 + 4 + 16 ) = 40 5 = 8 \sigma^2 = \frac{1}{5} (16 + 4 + 0 + 4 + 16) = \frac{40}{5} = 8 σ2=51(16+4+0+4+16)=540=8
样本方差的无偏估计

假设我们抽取多个样本,每个样本包含3个数据点:

样本 1 2 , 4 , 6 2, 4, 6 2,4,6

  1. 样本平均值
    x ˉ 1 = 2 + 4 + 6 3 = 4 \bar{x}_1 = \frac{2 + 4 + 6}{3} = 4 xˉ1=32+4+6=4

  2. 平方偏差
    ( 2 − 4 ) 2 = 4 (2 - 4)^2 = 4 (24)2=4
    ( 4 − 4 ) 2 = 0 (4 - 4)^2 = 0 (44)2=0
    ( 6 − 4 ) 2 = 4 (6 - 4)^2 = 4 (64)2=4

  3. 样本方差(无偏估计)
    s 1 2 = 1 3 − 1 ( 4 + 0 + 4 ) = 8 2 = 4 s^2_1 = \frac{1}{3-1} (4 + 0 + 4) = \frac{8}{2} = 4 s12=311(4+0+4)=28=4
    样本 2 4 , 6 , 8 4, 6, 8 4,6,8

  4. 样本平均值
    x ˉ 2 = 4 + 6 + 8 3 = 6 \bar{x}_2 = \frac{4 + 6 + 8}{3} = 6 xˉ2=34+6+8=6

  5. 平方偏差
    ( 4 − 6 ) 2 = 4 (4 - 6)^2 = 4 (46)2=4
    ( 6 − 6 ) 2 = 0 (6 - 6)^2 = 0 (66)2=0
    ( 8 − 6 ) 2 = 4 (8 - 6)^2 = 4 (86)2=4

  6. 样本方差(无偏估计)
    s 2 2 = 1 3 − 1 ( 4 + 0 + 4 ) = 8 2 = 4 s^2_2 = \frac{1}{3-1} (4 + 0 + 4) = \frac{8}{2} = 4 s22=311(4+0+4)=28=4
    样本 3 6 , 8 , 10 6, 8, 10 6,8,10

  7. 样本平均值
    x ˉ 3 = 6 + 8 + 10 3 = 8 \bar{x}_3 = \frac{6 + 8 + 10}{3} = 8 xˉ3=36+8+10=8

  8. 平方偏差
    ( 6 − 8 ) 2 = 4 (6 - 8)^2 = 4 (68)2=4
    ( 8 − 8 ) 2 = 0 (8 - 8)^2 = 0 (88)2=0
    ( 10 − 8 ) 2 = 4 (10 - 8)^2 = 4 (108)2=4

  9. 样本方差(无偏估计)
    s 3 2 = 1 3 − 1 ( 4 + 0 + 4 ) = 8 2 = 4 s^2_3 = \frac{1}{3-1} (4 + 0 + 4) = \frac{8}{2} = 4 s32=311(4+0+4)=28=4
    我们看到,不同的样本有不同的方差,但这些样本方差的平均值趋向于总体方差。这是无偏估计的意义:期望值(平均值)等于总体方差。

结论
10. 总体方差:总体所有数据点的平均平方偏差。在例子中,计算得到总体方差为 8。
11. 样本方差(无偏估计):为了估计总体方差,样本方差用 n − 1 n-1 n1 作为分母,使其期望值等于总体方差。对于样本方差来说,使用 n − 1 n-1 n1 作为分母确保其期望值等于总体方差。这并不意味着每一个具体的样本方差都等于总体方差,而是多个样本方差的平均值会接近于总体方差。
12. 无偏估计的意义:单个样本方差不一定等于总体方差,但多个样本方差的平均值会接近于总体方差,从而实现无偏估计的目标。无偏估计的概念是基于期望值的。当我们从总体中抽取一个样本并计算样本方差时,我们使用 n − 1 n-1 n1 作为分母而不是 n n n。这是因为样本均值 x ˉ \bar{x} xˉ 是用所有 n n n 个数据点计算出来的,这使得样本中的偏差和为零,消耗了一个自由度。使用 n − 1 n-1 n1 可以使样本方差成为总体方差的无偏估计。

通过无偏估计,确保在长远来看,估计值不会系统性地偏离真实值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/698295.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

震撼!AI语言模型突破瓶颈,26个提示词原则引领GPT-4响应质量飙升57.7%!你的模型还在等什么?

不是模型不够强大,是你的提示不够精准。 当大型语言模型如ChatGPT在各领域大放异彩时,普通用户却对其指令设计一头雾水。这篇论文揭秘了与模型交流的秘诀,仅凭优化提示,就让GPT-4响应质量和准确性分别飙升57.7%和36.4%&#xff0…

重生奇迹mu套装掉的地点一览

1、目前只有三个地方掉套装:赤色要塞,不是100%掉,靠运气。卡利玛7,杀困顿能掉。魔炼之地,只有城主盟成员可以进入。 2、只有攻城城主盟可以进入的地图“魔炼之地”掉套装,暴率几乎为0。如果你是敏法的话&am…

C++ 判断目标文件是否被占用(独占)(附源码)

在IM软件中发起文件发送时,如果要发送的是某word文件,并且该word文件被office打开,则会提示文件正在被占用无法发送,如下所示: 那文件被占用到底是如何判断出来的呢?其实很简单,调用系统API函数CreateFile,打开该文件(OPEN_EXISTING),传入FILE_SHARE_READ共享读标记…

MySQL—多表查询—练习(2)

一、引言 接着上篇博客《 MySQL多表查询——练习(1)》继续完成剩下的案例需求。 二、案例 (0)三张表(员工表、部门表、薪资等级表) 员工表:emp 部门表:dept 薪资等级表:…

CF297C Splitting the Uniqueness 题解

CF297C Splitting the Uniqueness 题解 非常好构造题,使我的草稿纸旋转。 解法 我们记输入的数组为 a a a,需要输出的两个数组为 b , c b,c b,c(因为当时起变量名起的)。 考虑利用 a i a_i ai​ 互不相同的性质。 先将 a…

Kaggle -- Titanic - Machine Learning from Disaster

新手kaggle之旅:1 . 泰坦尼克号 使用一个简单的决策树进行模型构建,达到75.8%的准确率(有点低,但是刚开始) 完整代码如下: import pandas as pd import numpy as npdf pd.read_csv("train.csv&quo…

Spring Boot 分片上传、断点续传、大文件上传、秒传,应有尽有

文件上传是一个老生常谈的话题了,在文件相对比较小的情况下,可以直接把文件转化为字节流上传到服务器,但在文件比较大的情况下,用普通的方式进行上传,这可不是一个好的办法,毕竟很少有人会忍受,…

《Brave New Words 》5.1 传递真相:偏见和虚假信息现状

Part V: Keeping Kids Safe 第五部分:确保孩子安全 Never travel faster than your guardian angel can fly. —Mother Teresa 永远不要比你的守护天使飞得更快。 ——特蕾莎修女 Distrust and caution are the parents of security. —Benjamin Franklin 不信任和谨…

使用 actor-critic 方法来控制 CartPole-V0 游戏

CartPole 介绍 在一个光滑的轨道上有个推车,杆子垂直微置在推车上,随时有倒的风险。系统每次对推车施加向左或者向右的力,但我们的目标是让杆子保持直立。杆子保持直立的每个时间单位都会获得 1 的奖励。但是当杆子与垂直方向成 15 度以上的…

Java开发基础技能简介

一、Java版本 JavaSE:标准版 JavaEE:企业版 二、IDEA工程中的模块 1.打开工程所在文件夹 鼠标右键点模块——open in——explorer 2.修改模块名 鼠标右键点模块——refactor-rename-rename module and directory 3.导出模块 ctrl c,…

LLM系列:KVCache及优化方法

前言 Transformer encode-base模型,推理和训练过程高度统一(差异仅仅是否存在反向),而decoder-base模型(如GPT、LLama2),推理与训练差异性比较大: 自回归推理全量prompt增量tokenK…

公司电脑文件防泄密软件系统——天锐绿盾 | 透明加密、防泄密系统

天锐绿盾是一款专业的企业信息安全防护软件,旨在防止公司内部文件的泄露。它提供了多种功能来保护敏感数据,确保企业信息的安全。 PC地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 以下是天锐绿盾的主…

[Java基础揉碎]网络相关概念

目录 网络通信 网络 ip地址 ​编辑 域名 ​编辑 网络协议 TCP和UDP 网络编程比较重要的的InetAddress类 Socket ​编辑 tcp字节流编程 案例一 案例二​编辑 案例三 网络上传文件 ​编辑​编辑 ​编辑 netstat tcp网络通信客户端也是通过端口和服务端进行通讯的…

输入失调电流是什么?

输入失调电流与输入补偿电流概念一样(input offset current):同相减去反相输入端偏置电流的差值。这是由生产工艺导致同相与反相端的电流大小方向都会有所不同。 第一种情况:同相输入端减去反相输入端 第一种情况:同相…

Elasticsearch 为时间序列数据带来存储优势

作者:来自 Elastic Martijn Van Groningen, Kostas Krikellas 背景 Elasticsearch 最近投资了对存储和查询时间序列数据的更好支持。存储效率一直是关注的主要领域,许多项目取得了巨大的成功,与将数据保存在标准索引中相比,可以节…

耐用充电宝有哪些?优质充电宝到底选哪个?良心推荐!

在电量即生产力的现今时代,如何为移动设备寻找一位最佳的伴侣呢?一款耐用、优质的充电宝无疑是你的不二之选。今天我们将带您揭开市场隐藏的一面,揭示哪些充电宝品牌真正代表了耐用与品质的标杆。让我们一起深入了解并选购最适合自己的充电宝…

MFC绘图

文章目录 消息组成消息的作用获取消息翻译消息常见消息WM_DESTROYWM_SYSCOMMAND 消息循环的阻塞发送消息字符串资源加速键资源GDI绘图对象-画笔位图绘制文本绘制字体模式对话框动态库特点线程创建线程 互斥事件信号量 消息组成 窗口句柄消息ID消息的两个参数消息产生的时间消息…

PGConf.dev 2024 |@PGer 你的问题已出海,来看看 Tom Lane 如何回复?

2024 PostgreSQL 开发大会(pgconf.dev)于5月8日在温哥华召开。瀚高IvorySQL发起留言互动活动——#PGConf.dev 2024数据世界因你不同#,已将部分用户想问的问题传递到PGConf.dev现场。 与会的大佬们对每一个问题都给予了认真的回复和解答。来看…

ABB机器人修改IO信号的具体方法介绍

ABB机器人修改IO信号的具体方法介绍 具体步骤可从参考以下内容: 导出IO配置文件 打开【控制面板】-【配置】-【I/O System】-【文件】-【‘EIO’另存为】,就可以保存IO配置文件【EIO.cfg】用RobotStudio软件打开EIO.cfg文件在软件界面,鼠标右击,选择【I/O信号数据编辑器】选…

Flutter 实现dispose探测控件

文章目录 前言一、什么是dispose探测控件?1、通常情况2、使用dispose探测控件 二、如何实现1、继承StatefulWidget2、定义dipose回调3、定义child4、重载Dispose方法5、build child 三、完整代码四、使用示例1、基本用法2、设置定义数据 总结 前言 开发flutter一般…