数据可视化——pyecharts库绘图

 目录

官方文档

使用说明: 

点击基本图表

可以点击你想要的图表

安装:

 一些例图:

柱状图:

 效果:

 折线图:

 效果:

环形图:

效果: 

 南丁格尔图(玫瑰图):

效果:

堆叠折线图:

效果:

堆叠柱状图:

 ​编辑

 拟合散点曲线图:




官方文档

使用说明: 

点击基本图表

  • 可以点击你想要的图表

  • 可以点击Demo里面有例图以及代码,可以复制下来再根据需求来改
  • 要查询图表的配置也可以到全局配置里面查找

安装:

pip install pyecharts -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

 一些例图:

这里引用的是一个全国各省份的GDP数据(需要拿来练习的可以私我拿数据~)

柱状图:

import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType

# 加载数据集
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')

# 提取2016年的数据并按GDP降序排列取前10个省份
data_2016 = data[['province','2016']]
top_10_gdp = data_2016['2016'].sort_values(ascending=False).head(10)
top_10_province = data_2016.loc[top_10_gdp.index, 'province']
# 获取省份和GDP数据
provinces = top_10_province.tolist()
gdp_values = top_10_gdp.tolist()

# 使用Pyecharts绘制柱状图
init_opts=opts.InitOpts(width='1000px',height='450px',theme=ThemeType.LIGHT)
bar = (
    Bar()
    .add_xaxis(provinces)
    .add_yaxis("GDP",gdp_values)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="2016年全国排名前10的省份GDP"),
        xaxis_opts=opts.AxisOpts(name="省份"),  
        yaxis_opts=opts.AxisOpts(name="GDP(亿元)"),
    )
)
bar.render_notebook()  # 将图表保存为HTML文件

 效果:

 折线图:

from pyecharts.charts import Line
from pyecharts import options as opts
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')
data_gx=data.loc[19]
data_gx
year_gx=data_gx.index.to_list()[1:][::-1]
gdp=list(data_gx.values)[1:][::-1]
years=year_gx[:10]
line = (
    Line()
    .add_xaxis(years)
    .add_yaxis("广西GDP", gdp)  # 设置曲线光滑
    .set_global_opts(
        title_opts=opts.TitleOpts(title="广西1997年至2016年的折线图"),
        xaxis_opts=opts.AxisOpts(name="年份"),
        yaxis_opts=opts.AxisOpts(name="GDP")  # 在这里添加逗号
    )
)

line.render_notebook()

 效果:

环形图:

import matplotlib.pyplot as plt
from pyecharts import options as opts
from pyecharts.charts import Pie  # 导入 Pie 类
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')
data_2014 = data[['province', '2014']]
top_10_gdp = data_2014['2014'].sort_values(ascending=False).head(10)
top_10_province = data_2014.loc[top_10_gdp.index, 'province']
gdp = top_10_gdp.tolist()
provinces = top_10_province.tolist()

pie=Pie()
pie.add('',[list(z)for z in zip(provinces,gdp)],radius=[70, 150])
pie.set_global_opts(title_opts=opts.TitleOpts(title='2024年全国各省GDP排名前十的省份', pos_top="5%"),
    legend_opts=opts.LegendOpts(pos_bottom="5%")
                    
)
pie.set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c}亿元({d}%)'))
pie.render_notebook()

效果: 

 南丁格尔图(玫瑰图):

import matplotlib.pyplot as plt
from pyecharts import options as opts
from pyecharts.charts import Page, Pie
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv',encoding='utf-8')
data_gx=data.loc[19]
#获取广西近八年GDP数据
year_gx=data_gx.index.to_list()[1:]
year_gx=year_gx[:8]
gdp_gx=list(data_gx.values)[1:][:8]

#获取江苏近八年GDP数据
data_js=data.loc[9]
year_js=data_js.index.to_list()[1:][:8]
gdp_js=list(data_js.values)[1:][:8]

# 绘制广西南丁格尔玫瑰图(area型)
guangxi_pie = (
    Pie()
    .add(
        series_name="广西近8年的GDP",  # 系列名称
        data_pair=[list(z) for z in zip(year_gx, gdp_gx)],  # 数据对,形如 [('2014', 100), ('2015', 120), ...]
        radius=[50, 200],  # 设置半径,形成南丁格尔玫瑰图
        rosetype="area",  # 设置玫瑰图类型为 area
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="广西近8年 GDP 变化"),  # 设置标题
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_right="2%")
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c}(亿元)({d}%)'))
)

# 绘制江苏南丁格尔玫瑰图(radius型)
jiangsu_pie = (
    Pie()
    .add(
        series_name="江苏 GDP 变化",  # 系列名称
        data_pair=[list(z) for z in zip(year_js, gdp_js)],  # 数据对,形如 [('2014', 200), ('2015', 220), ...]
        radius=[50, 200],  # 设置半径,形成南丁格尔玫瑰图
        rosetype="radius",  # 设置玫瑰图类型为 radius
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="江苏近8年 GDP 变化"),  # 设置标题
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_right="2%")
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c}(亿元)({d}%)'))
)

# 创建一个页面,并将两个图添加到页面中
page = Page()
page.add(guangxi_pie)
page.add(jiangsu_pie)

# 渲染并保存 HTML 文件
page.render_notebook()

效果:

堆叠折线图:


import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Line
from pyecharts.globals import ThemeType
from pyecharts import options as opts
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv')
# 截取北京的数据
data_bj = data.loc[0]
year_bj = data_bj.index.to_list()[1:]
gdp_bj = list(data_bj.values)[1:]

# 截取上海数据
data_sh = data.loc[8]
year_sh = data_sh.index.to_list()[1:]
gdp_sh = list(data_sh.values)[1:]

# 截取广东数据
data_gd = data.loc[18]
year_gd = data_gd.index.to_list()[1:]
gdp_gd = list(data_gd.values)[1:]

# 创建堆叠面积图对象
line = Line()

# 添加数据并设置堆叠属性
line.add_xaxis(year_bj)
line.add_yaxis("北京", gdp_bj, is_smooth=True, stack="stack1", areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
line.add_yaxis("上海", gdp_sh, is_smooth=True, stack="stack1", areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
line.add_yaxis("广东", gdp_gd, is_smooth=True, stack="stack1", areastyle_opts=opts.AreaStyleOpts(opacity=0.5))

# 设置全局配置项
line.set_global_opts(
    title_opts=opts.TitleOpts(title="北京、上海、广东历年GDP变化堆叠面积图"),
    xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
    yaxis_opts=opts.AxisOpts(type_="value", name="GDP(亿元)"),
    tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)

# 渲染图像
line.render_notebook()

效果:

堆叠柱状图:

from pyecharts.charts import Bar
import pandas as pd
from pyecharts import options as opts
from pyecharts.globals import ThemeType

#截取广西数据
data = pd.read_csv(r'D:\Dabby\Documents\数据可视化\gdp.csv')
data_gx=data.loc[19]
year_gx=data_gx.index.to_list()[1:][::-1]
gdp_gx=list(data_gx.values)[1:][::-1]

#截取广东数据
data_gd=data.loc[18]
year_gd=data_gd.index.to_list()[1:][::-1]
gdp_gd=list(data_gd.values)[1:][::-1]


# 绘制堆叠柱状图  
bar = Bar()  # 注意:这里你可能需要导入InitOpts,但在某些版本的Pyecharts中可能不是必需的  
bar.add_xaxis(year_gx)  
# 注意:添加stack参数并将值设置为相同的字符串(例如'gdp'),以使序列堆叠  
bar.add_yaxis("广西", gdp_gx, stack="gdp")  
bar.add_yaxis("广东", gdp_gd, stack="gdp")  
  
bar.set_global_opts(  
    title_opts=opts.TitleOpts(title="近年来广西和广东的GDP趋势"),  
    xaxis_opts=opts.AxisOpts(type_="category"),  
    yaxis_opts=opts.AxisOpts(type_="value", name="GDP (亿元)"),  
    legend_opts=opts.LegendOpts(pos_left="center", pos_top="top")  
)  
bar.render_notebook()

 

 拟合散点曲线图:

mport pandas as pd
import numpy as np
from pyecharts import options as opts
from pyecharts.charts import Line
from pyecharts.charts import Scatter
from pyecharts.globals import ThemeType
data=pd.read_csv(r"D:\Dabby\Documents\数据可视化\gdp.csv",encoding='utf-8')
#截取广西数据
data_gx=data.loc[19]
year_gx=data_gx.index.to_list()[1:]
gdp_gx=list(data_gx.values)[1:]
#先绘制散点图
scatter=Scatter()
scatter.add_xaxis(year_gx)
scatter.add_yaxis("GDP",gdp_gx)
scatter.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
scatter.set_global_opts(title_opts=opts.TitleOpts(title='广西的20年gdp散点拟合曲线')) 
scatter.render_notebook()
#计算拟合三次多项式的x,y,z
year_gx_float = np.array(year_gx, dtype=float)  
gdp_gx_float = np.array(gdp_gx, dtype=float)  
poly=np.polyfit(year_gx_float,gdp_gx_float,deg=3)
#绘制拟合曲线散点图
line=Line()
line.add_xaxis(list(year_gx))  
line.add_yaxis('GDP', np.polyval(poly, year_gx_float))  
line.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
scatter.overlap(line)
scatter.render_notebook()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/697675.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mysql的InnoDB介绍

目录 show engines查看搜索殷勤,默认InnoDB。 Mysql为什么使用InnoDB作为默认存储引擎 InnoDB主要包括内存结构和磁盘结构 内存结构包含: 磁盘结构中包括: 为什么设计成内存结构和磁盘结构两部分 使用InnoDB存储引擎创建的表,对应的数据文件在哪里…

Android14之向build.prop添加属性(二百一十九)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 优质视频课程:AAOS车载系统+AOSP…

uniapp原生插件开发实战——集成Android端的Twitter登陆

Android集成Twitter登陆的官方教程:https://github.com/twitter-archive/twitter-kit-android/wiki 项目创建 首先可以先看下uniapp原生插件开发教程 uniapp原生插件类型分为两种: Module模式:能力扩展,无嵌入窗体的UI控件,类似于功能插件。Component模式:在窗体中内嵌…

php 混合xml js,html 代码报错 ,结束标签关闭, short_open_tag 的作用,php关闭文件结束判断

结束标签关闭, short_open_tag 的作用,php关闭文件结束判断 有时候我们我们会将php,xml,js,html 混合编写 php文件只要开始标签而不要结尾标签? 混合代码看代码 直接运行 yntax error, unexpected version (T_STRING) in php…

STM32智能家居项目esp8266上云OneNet【附源码+详细教程】

目录 一、硬件选材 二、OneNet使用教程 三、代码修改教程 四、添加数据流方法 五、项目工程(源码元件清单教程) 小白也能做,项目工程在后文可下载。 一、硬件选材 二、OneNet使用教程 拿到代码后肯定是连不上网的,因为源码…

Android.基本用法学习笔记

设置文本的内容 先在strings.xml声明变量 方法1. 方法2. 设置文本的大小 1.单位dp,大家可以去学一下有关的单位换算 2. 设置文本颜色 1. 2. 4.设置文本背景颜色 1. 2. 设置视图的宽高 与上级视图一致,也就是上一级有多宽就有多少 1. 2. 3. 4. 设置视图…

生成式人工智能重置:从初期热潮到战略扩展

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

cs61C | lecture4

cs61C | lecture4 C 语言内存布局 ### Stack 在最顶部,向下增长。包含局部变量和 function frame information。 > Each stack frame is a contiguous block of memory holding the local variables of a single procedure. > A stack frame includes: > …

C语言详解(文件操作)2

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…

浅析嵌入式实时系统中信号量的概念

目录 概述 1. 认识信号量 1.1 定义信号量 1.2 信号量的类型 1.2.1 二值信号量 1.2.2 计数信号量 1.2.3 互斥信号量 1.2.3.1 认识互斥信号量 1.2.3.2 互斥信号量的其他特性 2 典型信号量的使用 2.1 等待和信号同步 2.2 多任务等待和信号同步 2.3 信用跟踪同步 2.…

C++ - Clion安装Qt msvc2017版本教程,基础环境配置clion+ Qt5.12.12 msvc2017 + VS2019

背景:平时代码开发使用clion,但使用项目要制定mscv2017版本Qt。先装过mingw版本Qt无法运行,但msvc版本依赖装有Visual Studio,本地装的又是2019版。就出现了这个大坑,需要配置好clion Qt msvc2017 VS2019。 文章目录 …

深度学习中embedding层的理解

Embedding层作用 在深度学习领域中,Embedding层扮演着至关重要的角色,尤其在处理文本数据或类别数据。Embedding层的功能有两个: 1. 将高维稀疏的输入数据(如单词、类别标签等)转换为低维稠密的向量表示,…

LNMP配置

文章目录 一、相关概念CGI的由来FastCGIPHP-FPM 二、编译安装编译安装nginxyum安装mysql编译安装php配置nginx支持php解析增加数据库安装论坛 一、相关概念 CGI的由来 最早的Web服务器只能简单地响应浏览器发来的HTTP请求,并将存储在服务器上的HTML文件返回给浏览器…

Python | Leetcode Python题解之第144题二叉树的前序遍历

题目: 题解: class Solution:def preorderTraversal(self, root: TreeNode) -> List[int]:res list()if not root:return resp1 rootwhile p1:p2 p1.leftif p2:while p2.right and p2.right ! p1:p2 p2.rightif not p2.right:res.append(p1.val)…

DeepSpeed MoE

MoE概念 模型参数增加很多;计算量没有增加(gating小FNN,比以前的大FNN计算量要小);收敛速度变快; 效果:PR-MoE > 普通MoE > DenseTransformer MoE模型,可视为Sparse Model&…

手机投屏到电脑时,手机提示连接失败

前言 注意,本方法建立在你已经通过其他帖子等解决了前置条件的情况下,手机提示连接失败情况下,包括但不限于关闭防火墙、安装无线投屏工具、手机和电脑连接在同一个WiFi频段下、关闭杀毒软件等。 具体操作方法 1、请进入设置 > 系统和…

电脑存储设备,固态硬盘介绍,usb接口

简介 存储设备分为两大类主存和辅存,另外还有专门提供存储服务的网络存储 主存储器 随机存取存储器(RAM, Random Access Memory) 特点:高速、易失性存储器,断电后数据丢失。用途:临时存储正在使用的数据…

卷积神经网络 convolution neural network

1.数学卷积:滑动窗口 2.图像具有局部相关性和平移不变性,有许多冗余的特征点,如果用全连接的神经网络会很浪费时间。 3.卷积nn:减少参数,滑动提取特征,特征作为下层卷积的输入,然后放到全连接…

Androidstudio项目加载不出来,显示Connect timed out

Android studio加载不出来所需要的环境依赖,99%的问题都是网络原因 解决办法有两个: 1.科学上网 2.使用国内的镜像 方法一自行解决,下面重点介绍方法二 在项目目录下找到gradle->wrapper->gradle-wrapper.properties 将项目的distributionUrl改为https://mirrors.cl…

设计模式-装饰器模式(结构型)

装饰器模式 装饰器模式是一种结构模式,通过装饰器模式可以在不改变原有类结构的情况下向一个新对象添加新功能,是现有类的包装。 图解 角色 抽象组件:定义组件的抽象方法具体组件:实现组件的抽象方法抽象装饰器:实现…