群体优化算法---水波优化算法介绍以及应用于聚类数据挖掘代码示例

介绍

水波优化算法(Water Wave Optimization, WWO)是一种新兴的群智能优化算法,灵感来自水波在自然环境中的传播和衰减现象。该算法模拟了水波在水面上传播和碰撞的行为,通过这些行为来寻找问题的最优解。WWO算法由三种主要的操作组成:波浪传播、波浪碰撞和波浪衰减

主要操作

波浪传播(Wave Propagation):
每个个体在搜索空间中产生新的候选解,类似于波浪的传播过程。
传播过程中,每个新解的生成依赖于当前解的位置和一定的随机扰动。

波浪碰撞(Wave Collision):
当波浪传播到一定程度时,会发生碰撞,产生新的波浪。
这些新的波浪代表了新的候选解,通常会在局部搜索范围内进行调整和优化。

波浪衰减(Wave Attenuation):
波浪传播和碰撞会逐渐减弱,类似于能量的耗散过程。
这一过程可以帮助算法避免过早收敛到局部最优解,并增强全局搜索能力

算法步骤

初始化:
随机生成初始种群,每个个体代表一个候选解。
计算每个个体的适应度值。

迭代过程:
波浪传播:对每个个体,根据其当前位置和随机扰动产生新的候选解,并计算新解的适应度。
波浪碰撞:对选定的个体进行局部搜索,通过生成新的解来提高搜索效率。
波浪衰减:逐步减少波浪的能量,以增加算法的稳定性和收敛性。

终止条件:
迭代达到最大次数或满足其他收敛条件时,算法终止。
返回找到的最优解及其适应度值。

水波优化算法的优势

全局搜索能力强:通过波浪传播和碰撞机制,能够有效跳出局部最优解,增强全局搜索能力。
简单易实现:算法结构简单,参数较少,容易实现和应用。
适应性强:可应用于连续和离散优化问题,并在不同领域展示出良好的性能

应用领域

函数优化:WWO算法可用于求解复杂的多峰函数的全局最优解。
工程优化:在结构优化、参数调优等工程问题中表现出色。
数据挖掘:用于分类、聚类等数据挖掘任务,展示出良好的适应性

本文实例

我们将使用次算法进行聚类数据挖掘,我们需要对数据集进行聚类分析。这包括使用WWO算法来优化聚类中心的位置,从而最大化聚类效果

代码

WWOClustering.m

function [best_centers, best_fitness, cluster_assignments] = WWOClustering(data, num_clusters, num_iterations, num_individuals, bounds)
    [num_points, dim] = size(data);
    
    % 初始化种群
    population = bounds(1) + (bounds(2) - bounds(1)) * rand(num_individuals, num_clusters, dim);
    fitness = zeros(num_individuals, 1);
    
    for i = 1:num_individuals
        fitness(i) = evaluateFitness(squeeze(population(i, :, :)), data, num_clusters);
    end
    
    % 记录最优解
    [best_fitness, best_idx] = min(fitness);
    best_centers = squeeze(population(best_idx, :, :));
    
    for iter = 1:num_iterations
        % 波浪传播
        for i = 1:num_individuals
            new_solution = population(i, :, :) + randn(1, num_clusters, dim) * (bounds(2) - bounds(1)) / iter;
            new_solution = min(max(new_solution, bounds(1)), bounds(2)); % 确保新解在边界内
            new_fitness = evaluateFitness(squeeze(new_solution), data, num_clusters);
            if new_fitness < fitness(i)
                population(i, :, :) = new_solution;
                fitness(i) = new_fitness;
            end
        end
        
        % 波浪碰撞
        for i = 1:num_individuals
            if rand < 0.1 % 10%的概率进行碰撞操作
                collision_partner = randi(num_individuals);
                new_solution = (population(i, :, :) + population(collision_partner, :, :)) / 2;
                new_fitness = evaluateFitness(squeeze(new_solution), data, num_clusters);
                if new_fitness < fitness(i)
                    population(i, :, :) = new_solution;
                    fitness(i) = new_fitness;
                end
            end
        end
        
        % 记录当前最优解
        [current_best_fitness, best_idx] = min(fitness);
        if current_best_fitness < best_fitness
            best_fitness = current_best_fitness;
            best_centers = squeeze(population(best_idx, :, :));
        end
    end
    
    % 计算最终的聚类分配
    cluster_assignments = assignClusters(data, best_centers, num_clusters);
end

function fitness = evaluateFitness(centers, data, num_clusters)
    [num_points, dim] = size(data);
    fitness = 0;
    for i = 1:num_points
        min_dist = inf;
        for j = 1:num_clusters
            dist = norm(data(i, :) - centers(j, :));
            if dist < min_dist
                min_dist = dist;
            end
        end
        fitness = fitness + min_dist;
    end
end

function assignments = assignClusters(data, centers, num_clusters)
    [num_points, dim] = size(data);
    assignments = zeros(num_points, 1);
    for i = 1:num_points
        min_dist = inf;
        for j = 1:num_clusters
            dist = norm(data(i, :) - centers(j, :));
            if dist < min_dist
                min_dist = dist;
                assignments(i) = j;
            end
        end
    end
end

runWWOClustering.m

data = rand(100, 2); % 随机生成数据点
num_clusters = 3; % 聚类数目
num_iterations = 100; % 迭代次数
num_individuals = 50; % 种群数量
bounds = [0, 1]; % 搜索空间

[best_centers, best_fitness, cluster_assignments] = WWOClustering(data, num_clusters, num_iterations, num_individuals, bounds);
disp('最佳聚类中心:');
disp(best_centers);
disp('最佳适应度值:');
disp(best_fitness);

% 绘制聚类结果
figure;
hold on;
colors = ['r', 'g', 'b', 'c', 'm', 'y'];
for i = 1:num_clusters
    scatter(data(cluster_assignments == i, 1), data(cluster_assignments == i, 2), 36, colors(i), 'filled');
end
scatter(best_centers(:, 1), best_centers(:, 2), 100, 'k', 'x');
title('WWO Clustering Result');
xlabel('X');
ylabel('Y');
hold off;

说明

1.WWOClustering:主函数,用于执行WWO聚类算法。
初始化种群:在给定的边界范围内随机生成初始种群。
波浪传播:根据当前解的位置和随机扰动产生新解。
波浪碰撞:选定个体进行局部搜索,通过生成新解来提高搜索效率。
记录最优解:在每次迭代中记录当前最优解。
计算最终的聚类分配:根据最优聚类中心计算最终的聚类分配。

2.evaluateFitness:计算适应度值,衡量聚类中心对数据点的聚类效果。

计算距离:计算每个数据点到最近聚类中心的距离,并累加所有距离作为适应度值。
3.assignClusters:根据聚类中心对数据点进行聚类分配。

分配聚类:计算每个数据点到各个聚类中心的距离,并分配到最近的聚类中心。
4.示例使用:随机生成数据点,执行WWO聚类算法,并显示结果。

绘制聚类结果:使用scatter函数绘制聚类结果,并标记聚类中心。

效果

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/697640.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE】Spring Boot MyBatis详解(一)

一.MyBatis的基本概念与相关配置. 1.基本概念 MyBatis是一款优秀的持久层框架&#xff0c;用于简化JDBC的开发。MyBatis本是Apache的一个开源项目iBatis&#xff0c;2010年这个项目由apache迁移到了google code&#xff0c;并且改名为MyBatis. 2013年11月迁移到Github.持久层…

区间预测 | Matlab实现GRU-ABKDE门控循环单元自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现GRU-ABKDE门控循环单元自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现GRU-ABKDE门控循环单元自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现GRU-ABKDE门控循环单元自适应…

[Vue3:组件通信)子组件props接收和watch监听,emit发送父组件 (添加修改设置成绩,添加、删除选课记录)

文章目录 一&#xff1a;系统功能&#xff1a;设置成绩&#xff08;添加或修改&#xff09;交互逻辑&#xff1a;涉及页面 Page02.vue&#xff0c;ModalEdit.vue主页面Page.vue注入子页面&#xff0c;使用子页面标签属性主页面对子页面做通信&#xff0c;子页面ModalEdit接收参…

Nginx+Tomcat负载均衡,动静分离群集

Nginx反向代理原理 Nginx 反向代理&#xff1a;将Nginx接收到的请求转发给其它应用服务器处理 Nginx 负载均衡&#xff1a;通过反向代理实现&#xff0c;还可以将nginx接收到的请求转发给多个后端应用服务器处理 Nginx 动静分离&#xff1a;静态页面请求&#xff0c;由nginx…

将AIRNet集成到yolov8中,实现端到端训练与推理

AIRNet是一个图像修复网络,支持对图像进行去雾、去雨、去噪声的修复。其基于对比的退化编码器(CBDE),将各种退化类型统一到同一嵌入空间;然后,基于退化引导恢复网络(DGRN)将嵌入空间修复为目标图像。可以将AIRNet的输出与yolov8进行端到端集成,实现部署上的简化。 本博…

vue3-使用富文本编辑器-wangEditor-文章发表1

最近在搞项目:我们组内几位成员正在搞一个网站搭建,以后更新会比较缓慢 引言:如果要网站要用的富文本编辑器的话,这边推荐用wangEditor 官网地址传送 : wangEditorhttps://www.wangeditor.com/ 我现在还在扩展我的写文章用的富文本编辑器 现在我将简单介绍一下其基本使用方…

IP协议(二)

TOC 一: 网段划分 同一个局域网的主机,要按一定的规则分配IP地址 把一个IP地址分为两部分: 前半部分 ,网络号 >用来表示局域网后半部分,主机号 > 用来区分同一个局域网中的不同主机 同一个局域网内部&#xff0c;主机之间的IP &#xff0c; 网络号相同&#xff0c;主…

对抗攻击论文阅读—AAAI2022—CMUA-Watermark

文章目录 CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes背景1、什么是对抗攻击1.1 主动防御与被动防御 2、整体思路3、方法3.1 整体流程3.2 如何破坏单个面部修改模型 G G G论文中代码 3.3 对抗扰动融合3.4 基于TPE的自动步长调整 4…

go语言后端开发学习(三)——基于validator包实现接口校验

前言 在我们开发模块的时候,有一个问题是我们必须要去考虑的&#xff0c;它就是如何进行入参校验&#xff0c;在gin框架的博客中我就介绍过一些常见的参数校验&#xff0c;大家可以参考gin框架学习笔记(四) ——参数绑定与参数验证&#xff0c;而这个其实也不是能够完全应对我…

智慧交通的神经中枢:利用ARMxy进行实时交通流数据采集

气候变化和水资源日益紧张&#xff0c;精准农业成为了提高农业生产效率、节约资源的关键。在这一变革中&#xff0c;ARMxy工业计算机扮演了核心角色&#xff0c;特别是在智能灌溉系统的实施中。 背景介绍&#xff1a; 某大型农场面临着灌溉效率低、水资源浪费严重的问题。传统的…

怎样快速获取Vmware VCP 证书,线上考试,voucher报名优惠

之前考一个VCP证书&#xff0c;要花大一万的费用&#xff0c;可贵了&#xff0c;考试费不贵&#xff0c;贵就贵在培训费&#xff0c;要拿到证书&#xff0c;必须交培训费&#xff0c;即使vmware你玩的很溜&#xff0c;不需要再培训了&#xff0c;但是一笔贵到肉疼的培训费你得拿…

(BAT向)Java岗常问高频面试汇总:MyBatis 微服务 Spring 分布式 MySQL等(1)

6.开启 Spring Boot 特性有哪几种方式&#xff1f; 7.Spring Boot 需要独立的容器运行吗&#xff1f; 8.运行 Spring Boot 有哪几种方式&#xff1f; 9.Spring Boot 自动配置原理是什么&#xff1f; 10.Spring Boot 2.X 有什么新特性&#xff1f;与 1.X 有什么区别&#xff1f;…

LeetCode74.搜索二维矩阵

各位客官们&#xff0c;大家好&#xff0c;今天我将给大家讲一个关于二维搜索矩阵的简单方法&#xff0c;大家如果觉得好的话不妨给个免费点赞吧^ _ ^. 题目要求&#xff0c;如图所示: 此题我用的是堆的形式直接把二维数组转为一级数组&#xff0c;然后再用二分查找的方式&am…

牛客热题:不同的路径数目(一)

&#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;力扣刷题日记 &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&#x1f349;留言 文章目录 牛客热题&#xff1a;不同的路径数目(一)题目链接方法…

R语言统计分析——图形的简单示例

参考资料&#xff1a;R语言实战【第2版】 1、示例一 # 绑定数据框mtcars attach(mtcars)# 打开一个图形窗口并生成一个散点图plot(wt,mpg)# 添加一条最优拟合曲线abline(lm(mpg~wt))# 添加标题title("Regression of MPG on weight") # 解除数据框绑定 detach(mtcar…

OpenAI 宕机事件:GPT 停摆的影响与应对

引言 2024年6月4日&#xff0c;OpenAI 的 GPT 模型发生了一次全球性的宕机&#xff0c;持续时间长达8小时。此次宕机不仅影响了OpenAI自家的服务&#xff0c;还导致大量用户涌向竞争对手平台&#xff0c;如Claude和Gemini&#xff0c;结果也导致这些平台出现故障。这次事件的广…

VMware Workstation Pro的最新下载地址

前言 VMware被Broadcom收购后现在的下载方式也改变了&#xff0c;Workstation Pro 和 Fusion Pro 产品现在起将免费供个人用户使用下载方式 首先先把下载地址打开 https://support.broadcom.com/group/ecx/productdownloads?subfamilyVMwareWorkstationPro 打开链接&#xff…

开源VisualFreebasic中文版,vb7 IDE,VB6升级64位跨平台开发安卓APP,Linux程序

吴涛老矣&#xff0c;社区苦无64位易语言&#xff0c;用注入DLL增强菜单&#xff0c;做成VS一样的界面 终归是治标不治本&#xff0c;一来会报毒&#xff0c;二来闭源20年没更新了 开源的VB7&#xff0c;欢迎易语言的铁粉进群&#xff1a;1032313876 【Freebasic编程语言】编绎…

cve_2017_12635-CouchDB垂直权限绕过

1.采用参考 https://www.cnblogs.com/mlxwl/p/16577781.html vulfocus&#xff1a;Vulfocus 漏洞威胁分析平台 2.产生原因 在2017年11月15日&#xff0c;CVE-2017-12635和CVE-2017-12636披露&#xff0c;CVE-2017-12635是由于Erlang和JavaScript对JSON解析方式的不同&#…

SOA的设计模式_3.微服务模式

SOA的架构中&#xff0c;复杂的ESB企业服务总线依然处于非常重要的位置&#xff0c;整个系统的架构并没有实现完全的组件化以及面向服务&#xff0c;它的学习和使用门槛依然偏高。而微服务不再强调传统SOA架构里面比较重的ESB企业服务总线&#xff0c;同时SOA的思想进入到单个业…