【因果推断python】26_双重稳健估计1

目录

不要把所有的鸡蛋放在一个篮子里

双重稳健估计

关键思想


不要把所有的鸡蛋放在一个篮子里

我们已经学会了如何使用线性回归和倾向得分加权来估计 E[Y|T=1]-E[Y|T=0]|X。但是我们应该在什么时候使用哪一个呢?在不明确的情况下,请同时使用两者!双重稳健估计是一种将倾向得分和线性回归相结合的方法,您不必依赖它们中的任何一种。

为了了解这是如何工作的,让我们考虑一下心态实验。这是一项在美国公立高中进行的随机研究,旨在发现成长心态的影响。它的工作方式是学校邀请学生参加一个研讨会,向他们灌输一种成长的心态。然后,他们跟踪学生在大学期间的表现,并衡量他们在学业上的表现。这个衡量结果被编译为标准化的成就分数。为了保护学生的隐私,这项研究的真实数据没有公开。但是,我们有一个与 Athey 和 Wager 提供的统计属性相同的模拟数据集,因此我们将改为使用这个数据来进行分析。

import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
from matplotlib import style
from matplotlib import pyplot as plt
import seaborn as sns

%matplotlib inline

style.use("fivethirtyeight")
pd.set_option("display.max_columns", 6)
data = pd.read_csv("./data/learning_mindset.csv")
data.sample(5, random_state=5)

虽然这项研究做了随机化处理,但这些数据并不是没有出现混淆的情况。其中一个可能的原因是,干预变量是通过学生是否收到研讨会邀请来衡量的。因此,尽管被邀请参与的机会是随机的,但是否真的参与却不是。我们在这里处理一个不服从(non-compliance)的情况。这方面的一个证据是学生对成功的期望是如何与是否参加研讨会相关联的。自我报告中期望较高的学生更有可能参加成长心态研讨会。

data.groupby("success_expect")["intervention"].mean()

正如已经学习到的,我们可以通过使用线性回归或者逻辑回归估计倾向得分模型的方法来调整不服从的情况。在做回归之前,我们需要将份类变量转化为虚拟变量。

categ = ["ethnicity", "gender", "school_urbanicity"]
cont = ["school_mindset", "school_achievement", "school_ethnic_minority", "school_poverty", "school_size"]

data_with_categ = pd.concat([
    data.drop(columns=categ), # dataset without the categorical features
    pd.get_dummies(data[categ], columns=categ, drop_first=False) # categorical features converted to dummies
], axis=1)

print(data_with_categ.shape)
(10391, 32)

我们现在已经准备好了解双重稳健估计的工作原理。

双重稳健估计\hat{\mu_0}(x)

我不会推导出估算器,而是首先向您展示它,然后才告诉您为什么它很棒。

A\hat{T}E=\frac1N\sum\left(\frac{T_i(Y_i-\hat{\mu_1}(X_i))}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)-\frac1N\sum\left(\frac{(1-T_i)(Y_i-\hat{\mu_0}(X_i))}{1-\hat{P}(X_i)}+\hat{\mu_0}(X_i)\right)

其中 \hat{P}(x) 是对倾向得分的估计(例如,使用逻辑回归),\hat{\mu_1}(x) 是对倾向得分的估计E[Y|X,T=1](例如使用线性回归),而 \mu_0(x) 是对 E[Y|X,T=0]。正如您可能已经猜到的那样,双重稳健估计器的第一部分估计 E[Y_{1}],第二部分估计 E[Y_{0}]。让我们检查第一部分,因为所有直觉也将通过类比适用于第二部分。

因为我一开始就知道这个公式很吓人(但别担心,你会看到它超级简单),我将首先展示如何编写这个估计器。我觉得有些人对代码的恐惧不如对公式的恐惧。让我们看看这个估计器在实践中是如何工作的,好吗?

from sklearn.linear_model import LogisticRegression, LinearRegression

def doubly_robust(df, X, T, Y):
    ps = LogisticRegression(C=1e6).fit(df[X], df[T]).predict_proba(df[X])[:, 1]
    mu0 = LinearRegression().fit(df.query(f"{T}==0")[X], df.query(f"{T}==0")[Y]).predict(df[X])
    mu1 = LinearRegression().fit(df.query(f"{T}==1")[X], df.query(f"{T}==1")[Y]).predict(df[X])
    return (
        np.mean(df[T]*(df[Y] - mu1)/ps + mu1) -
        np.mean((1-df[T])*(df[Y] - mu0)/(1-ps) + mu0)
    )
T = 'intervention'
Y = 'achievement_score'
X = data_with_categ.columns.drop(['schoolid', T, Y])

doubly_robust(data_with_categ, X, T, Y)
0.3882222817222756

双重稳健估计者说,就成就而言,我们应该期望参加心态研讨会的个人比未经治疗的同伴高 0.388 个标准差。 再一次,我们可以使用 bootstrap 来构建置信区间。

from joblib import Parallel, delayed # for parallel processing

np.random.seed(88)
# run 1000 bootstrap samples
bootstrap_sample = 1000
ates = Parallel(n_jobs=4)(delayed(doubly_robust)(data_with_categ.sample(frac=1, replace=True), X, T, Y)
                          for _ in range(bootstrap_sample))
ates = np.array(ates)
print(f"ATE 95% CI:", (np.percentile(ates, 2.5), np.percentile(ates, 97.5)))
sns.distplot(ates, kde=False)
plt.vlines(np.percentile(ates, 2.5), 0, 20, linestyles="dotted")
plt.vlines(np.percentile(ates, 97.5), 0, 20, linestyles="dotted", label="95% CI")
plt.title("ATE Bootstrap Distribution")
plt.legend();

现在我们已经了解了双重稳健估计器,让我们来看看为什么它如此出色。首先,它被称为双重鲁棒,因为它只需要模型之一,\hat{P}(x)\hat{\mu}(x)是正确的指定的。要了解这一点,请查看估计 E[Y_{1}]的第一部分并仔细查看它。

\hat{E}[Y_1]=\frac{1}{N}\sum\left(\frac{T_i(Y_i-\hat{\mu_1}(X_i))}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)

假设 \hat{\mu_1}(x) 是正确的。如果倾向得分模型是错误的,我们不需要担心。因为如果\hat{\mu_1}(x) 是正确的,那么 E[T_i(Y_i-\hat{\mu_1}(X_i))]=0。那是因为 T_{i}的乘法只选择了被处理的,并且\hat{\mu_1} 在被处理的残差上,根据定义,均值为零。这导致整个公式等于 \hat{\mu_1}(X_i),这是通过假设正确估计的 E[Y_{1}]。所以,你看,通过正确,\hat{\mu_1}(X_i) 消除了倾向得分模型的相关性。我们可以应用相同的推理来理解 E[Y_0] 的估计量。

但不要相信我的话。让代码告诉你方向!在下面的估计器中,我用一个从 0.1 到 0.9 的随机统一变量替换了估计倾向得分的逻辑回归(我不希望非常小的权重破坏我的倾向得分方差)。由于这是随机的,所以它不可能是一个好的倾向得分模型,但我们将看到双重稳健估计器仍然设法产生一个非常接近于使用逻辑回归估计倾向得分时的估计值。

from sklearn.linear_model import LogisticRegression, LinearRegression

def doubly_robust_wrong_ps(df, X, T, Y): # wrong PS model 
    np.random.seed(654) 
    ps = np.random.uniform(0.1, 0.9, df.shape[0]) 
    mu0 = LinearRegression().fit(df.query(f"{T}==0")[X], df.query(f"{T}==0")[Y]).predict(df[X]) 
    mu1 = LinearRegression().fit(df.query(f"{T}==1")[X], df.query(f"{T}==1")[Y]).predict(df[X]) 
    return ( np.mean(df[T](df[Y] - mu1)/ps + mu1) - np.mean((1-df[T])(df[Y] - mu0)/(1-ps) + mu0) )

doubly_robust_wrong_ps(data_with_categ, X, T, Y)

如果我们使用自助采样法,我们可以看到,相比基于逻辑回归的倾向得分,方差会稍高一点。

np.random.seed(88)
parallel_fn = delayed(doubly_robust_wrong_ps)
wrong_ps = Parallel(n_jobs=4)(parallel_fn(data_with_categ.sample(frac=1, replace=True), X, T, Y)
                              for _ in range(bootstrap_sample))
wrong_ps = np.array(wrong_ps)
print(f"ATE 95% CI:", (np.percentile(ates, 2.5), np.percentile(ates, 97.5)))

这涵盖了倾向模型错误但结果模型正确的情况。其他情况呢?让我们再好好看看估计器的第一部分,但让我们重新排列一些术语

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_i(Y_i-\hat{\mu_1}(X_i))}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_iY_i}{\hat{P}(X_i)}-\frac{T_i\hat{\mu_1}(X_i)}{\hat{P}(X_i)}+\hat{\mu_1}(X_i)\right)

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_iY_i}{\hat{P}(X_i)}-\left(\frac{T_i}{\hat{P}(X_i)}-1\right)\hat{\mu_1}(X_i)\right)

\hat{E}[Y_1]=\frac1N\sum\left(\frac{T_iY_i}{\hat{P}(X_i)}-\left(\frac{T_i-\hat{P}(X_i)}{\hat{P}(X_i)}\right)\hat{\mu_1}(X_i)\right)

现在,假设正确指定了倾向得分 \hat{P}(X_i)。在这种情况下,E[T_i-\hat{P}(X_i)]=0,它消除了依赖于 \hat{\mu_1}(X_i) 的部分。这使得双重鲁棒估计器减少为倾向得分加权估计器 \frac{T_iY_i}{\hat{P}(X_i)},假设是正确的。因此,即使 \hat{\mu_1}(X_i)是错误的,只要正确指定了倾向得分,估计器仍然是正确的。

再一次,如果你更相信代码而不是公式,这里就是实际验证。在下面的代码中,我用随机正态变量替换了两个回归模型。毫无疑问 \hat{\mu}(X_i)是错误的。尽管如此,我们仍将看到双重稳健估计仍设法恢复我们之前看到的大约 0.38 的相同 \hat{ATE}

from sklearn.linear_model import LogisticRegression, LinearRegression

def doubly_robust_wrong_model(df, X, T, Y):
    np.random.seed(654)
    ps = LogisticRegression(C=1e6).fit(df[X], df[T]).predict_proba(df[X])[:, 1]
    
    # wrong mu(x) model
    mu0 = np.random.normal(0, 1, df.shape[0])
    mu1 = np.random.normal(0, 1, df.shape[0])
    return (
        np.mean(df[T]*(df[Y] - mu1)/ps + mu1) -
        np.mean((1-df[T])*(df[Y] - mu0)/(1-ps) + mu0)
    )
doubly_robust_wrong_model(data_with_categ, X, T, Y)

同样的,我们可以通过使用自助采样法看到方差还是相对高一点。

np.random.seed(88)
parallel_fn = delayed(doubly_robust_wrong_model)
wrong_mux = Parallel(n_jobs=4)(parallel_fn(data_with_categ.sample(frac=1, replace=True), X, T, Y)
                               for _ in range(bootstrap_sample))
wrong_mux = np.array(wrong_mux)
print(f"ATE 95% CI:", (np.percentile(ates, 2.5), np.percentile(ates, 97.5)))

我希望我已经让你相信双重稳健估计的力量。它之所以神奇,是因为在因果推理中,有两种方法可以从我们的因果估计中消除偏见:您可以对干预机制或结果机制进行建模如果这些模型中的任何一个都是正确的,那么您就可以开始了。

一个需要警惕的地方是,在实践中,很难对其中任何一个进行精确建模更常见的情况是,倾向得分和结果模型都不是 100% 正确的。他们都错了,但方式不同。发生这种情况时, 是使用单一模型最好还是使用双重稳健估计更佳,目前还没有一个定论[1] [2] [3]。至于我,我仍然喜欢对两种方法都考虑一下,因为至少给了我两种正确的可能性。

关键思想

在这里,我们看到了一种将线性回归与倾向得分相结合的简单方法,以产生双重稳健的估计量。这个估计器之所以有这个名字,是因为它只需要一个模型是正确的。如果倾向得分模型是正确的,即使结果模型是错误的,我们也能够识别因果效应。另一方面,如果结果模型是正确的,即使倾向评分模型是错误的,我们也能够识别因果效应。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/697537.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL8基于GTID以及VIP实现高可用主从架构

jdbc客户端配置高可用以及故障切换 jdbc客户端实现故障切换 MySQL Connector/J 支持服务器故障转移。当底层活动连接发生与连接相关的错误时,就会发生故障转移 参考官网地址 jdbc:mysql://[primary host][:port],[secondary host 1][:port] jdbc客户端实现故障切…

数据结构复习笔记

简答题 (3) 顺序表和链表的概念及异同 顺序表: 把逻辑上相邻的结点储存在物理位置上的相邻储存单元中,结点的逻辑关系由储存单元的邻接关系来体现.链表: 逻辑上相邻的结点存储再物理位置上非连续非顺序的存储单元中, 结点的逻辑关系由指向下一个结点的指针确保.相…

LangChain开发【NL2SQL】应用

前言 关于LangGraph的简单介绍,请参考这篇博客: LangGraph开发Agent智能体应用【基础聊天机器人】-CSDN博客 对比LangChain实现NL2SQL 关于用LangChain开发NL2SQL的Agent应用,在这篇博客提供了完整的代码实现: LangChain开发…

xilinx的Aurora8B10B的IP仿真及上板测试(高速收发器十七)

前文讲解了Aurora8B10B协议原理及xilinx相关IP,本文讲解如何设置该IP,并且通过示例工程完成该IP的仿真和上板。 1、生成Aurora8B10B IP 如下图所示,首先在vivado的IP catalog中输入Aurora 8B10B,双击该IP。 图1 查找Aurora 8B10…

selenium自动化测试入门 —— Alert/Confirm/Prompt 弹出窗口处理!

一、Alert/Confirm/Prompt弹出窗口特征说明 Alert弹出窗口: 提示用户信息只有确认按钮,无法通过页面元素定位,不关闭窗口无法在页面上做其他操作。 Confirm 弹出窗口: 有确认和取消按钮,该弹出窗口无法用页面元素定…

angular2开发知识点

目录 文章目录 一、API 网关地址 配置二、服务注册使用三、模块组件注册使用四、html中style类动态绑定1. 单个类的绑定:[class.special]"isSpecial"2. 多个类的绑定:[ngClass]"{selected:status ,saveable: this.canSave,}"3. 单个…

ElementUI中date-picker组件,怎么把大写月份改为阿拉伯数字月份(例如:一月、二月,改为1月、2月)

要将 Element UI 的 <el-date-picker> 组件中的月份名称从中文大写&#xff08;如 "一月", "二月"&#xff09;更改为阿拉伯数字&#xff08;如 "1月", "2月"&#xff09;&#xff0c;需要进行一些定制化处理。可以通过国际化&a…

测试与开发

目录 按照测试目标分类 界面测试 功能测试 性能测试 可靠性测试 安全性测试 易用性测试 按照执行方式分类&#xff1a; 测试方法 白盒测试 语句覆盖 条件覆盖 判定条件覆盖 条件组合覆盖 路径覆盖 黑盒测试 灰盒测试 按照测试阶段分类 单元测试 集成测试 …

Java24:会话管理 过滤器 监听器

一 会话管理 1.cookie 是一种客户端会话技术&#xff0c;cookie由服务端产生&#xff0c;它是服务器存放在浏览器的一小份数据&#xff0c;浏览器 以后每次访问服务器的时候都会将这小份的数据带到服务器去。 //创建cookie对象 Cookie cookie1new Cookie("…

使用DPO微调大模型Qwen2详解

简介 基于人类反馈的强化学习 (Reinforcement Learning from Human Feedback&#xff0c;RLHF) 事实上已成为 GPT-4 或 Claude 等 LLM 训练的最后一步&#xff0c;它可以确保语言模型的输出符合人类在闲聊或安全性等方面的期望。但传统的RLHF比较复杂&#xff0c;且还需要奖励…

OSPF LSA头部详解

LSA概述 LSA是OSPF的本质 , 对于网工来说能否完成OSPF的排错就是基于OSPF的LSDB掌握程度 . 其中1/2类LAS是负责区域内部的 类似于设备的直连路由 . 加上对端的设备信息 3 类LSA是区域间的 指的是Area0和其他Area的区域间关系 , 设计多区域的初衷就是避免大型OSPF环境LSA太多…

AMD在行动:揭示应用程序跟踪和性能分析的力量

AMD in Action: Unveiling the Power of Application Tracing and Profiling — ROCm Blogs 导言 Rocprof是一款强大的工具&#xff0c;设计用于分析和优化基于AMD ROCm平台上运行的HIP程序的性能&#xff0c;帮助开发者找出并解决性能瓶颈。Rocprof提供了多种性能数据&#x…

生成树协议(思科)

#交换设备 生成树协议&#xff08;STP) 目的 1.理解生成树的原理 理解STP的选举过程 2.会配置STP 为什么只有交换机0的f0/1接口变成了阻塞状态&#xff1f; 在环形的交换网络中&#xff0c;如果所有的接口都通畅&#xff0c;会形成闭回路&#xff0c;造成网路风暴 一、STP…

【优选算法】字符串

一、相关编程题 1.1 最长公共前缀 题目链接 14. 最长公共前缀 - 力扣&#xff08;LeetCode&#xff09; 题目描述 算法原理 编写代码 // 解法一&#xff1a;两两比较 class Solution { public:string longestCommonPrefix(vector<string>& strs) {int k strs[0…

《QT实用小工具·七十》openssl+qt开发的P2P文件加密传输工具

1、概述 源码放在文章末尾 该项目实现了P2P的文件加密传输功能&#xff0c;具体包含如下功能&#xff1a; 1、 多文件多线程传输 2、rsaaes文件传输加密 3、秘钥随机生成 4、断点续传 5、跨域传输引导服务器 项目界面如下所示&#xff1a; 接收界面 发送界面 RSA秘钥生成…

CTF-PWN-kernel-UAF

文章目录 参考slub 分配器kmem_cache_cpukmem_cache_node[ ]冻结和解冻分配释放 fork绑核Kmalloc flag和slub隔离CISCN - 2017 - babydriver检查babtdriver_initstruct cdevalloc_chrdev_regioncdev_initownercdev_add_class_createdevice_create babyopenbabyreleasebabyreadb…

CleanMyMac2024最新免费电脑Mac系统优化工具

大家好&#xff0c;我是你们的好朋友——软件评测专家&#xff0c;同时也是一名技术博主。今天我要给大家种草一个超级实用的Mac优化工具——CleanMyMac&#xff01; 作为一个长期使用macOS的用户&#xff0c;我深知系统运行时间长了&#xff0c;缓存文件、日志、临时文件等都会…

数据库管理-第200期 身边的数据库从业者(20240610)

数据库管理200期 2024-06-10 数据库管理-第200期 身边的数据库从业者&#xff08;20240610&#xff09;首席-薛晓刚院长-施嘉伟邦德-王丁丁强哥-徐小强会长-吴洋灿神-熊灿灿所长-严少安探长-张震总结活动预告 数据库管理-第200期 身边的数据库从业者&#xff08;20240610&#…

**《Linux/Unix系统编程手册》读书笔记24章**

D 24章 进程的创建 425 24.1 fork()、exit()、wait()以及execve()的简介 425 . 系统调用fork()允许父进程创建子进程 . 库函数exit(status)终止进程&#xff0c;将进程占用的所有资源归还内核&#xff0c;交其进行再次分配。库函数exit()位于系统调用_exit()之上。在调用fo…

HTML开发的最主要的三种框架及Python实现

一、介绍 HTML本身是一种标记语言&#xff0c;用于构建网页的结构。然而&#xff0c;当谈到HTML开发框架时&#xff0c;通常指的是那些提供了额外的功能和工具&#xff0c;以帮助开发者更高效地构建网页和应用程序的框架。有三种流行的HTML开发框架&#xff1a; Bootstrap 简介…