利用阿里云PAI平台微调ChatGLM3-6B

1.介绍ChatGLM3-6B

ChatGLM3-6B大模型是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。

1.1 模型规模

模型规模通常用参数数量(parameters)来衡量。参数数量越多,模型理论上越强大,但也更耗费资源。以下是一些典型模型的参数数量对比:

ChatTGLM3-6b:6 billion (60亿) 参数
GPT-3:175 billion (1750亿) 参数
BERT Large:340 million (3.4亿) 参数
GPT-2:1.5 billion (15亿) 参数
从参数数量上看,ChatTGLM3-6b比BERT和GPT-2大,但远小于GPT-3。

1.2 性能对比

性能可以通过在各种基准测试(benchmarks)上的表现来衡量,例如自然语言理解、问答、翻译等任务。以下是一些假设数据(具体的数值可能会有所不同,但用于说明差异):

性能对比

1.3 资源消耗对比表

资源消耗对比表
这些数据表明,ChatTGLM3-6b在资源消耗上比GPT-3低,但比BERT和GPT-2高一些。

2. 部署ChatGLM3-6B大模型

适用于本地交互和测试,适合个人用户和开发者进行快速迭代和调试,命令行模式。
1. 下载大模型

mkdir models
cd models
 
apt update
# 能够拉长文本形式的文件
apt install git-lfs
 
# 克隆chatGLM3-6b大模型
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git

chatglm3-6b目录如图

2.下载项目

我们通过下面的 命令行 和 网页版 调用我们部署的本地大模型

mkdir webcodes
cd webcodes
 
# 下载chatglm3-6b web_demo项目
git clone https://github.com/THUDM/ChatGLM3.git

# 安装依赖
pip install -r requirements.txt

下载的ChatGLM项目

启动(启动之前需要修改大模型路径,如果没有修改默认从Hugging Face下载【需要魔法】),以下为小黑窗启动为例:
修改模型路径

# 小黑窗启动命令
python cli_demo.py

# 网页端启动
streamlit run web_demo_streamlit.py

效果如图所示

3. OpenAPI的部署

适用于需要将ChatGLM3-6B模型作为服务提供的场景,提供了丰富的API接口和灵活的部署选项【处理了文本的嵌入】。

1.下载向量,这里我以m3e为例子

cd models
# 克隆m3e向量模型
git clone https://www.modelscope.cn/xrunda/m3e-base.git

2.修改大模型路径
修改大模型路径

3,运行启动

cd openai_api_demo
python api_server.py

4. 测试

curl -X POST "http://127.0.0.1:8000/v1/chat/completions" \
-H "Content-Type: application/json" \
-d "{\"model\": \"chatglm3-6b\", \"messages\": [{\"role\": \"system\", \"content\": \"You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.\"}, {\"role\": \"user\", \"content\": \"你好,你是谁?\"}], \"stream\": false, \"max_tokens\": 100, \"temperature\": 0.8, \"top_p\": 0.8}"

调用OpenAPI接口

4. ChatGLM3-6B大模型loar微调

借助LLaMA-Factory实现快速微调(官方推荐)LLaMA Factory的官网图片
1. 安装LLaMA-Factory
克隆LLaMA-Factory 以及install所需依赖

# 克隆项目
git clone https://github.com/hiyouga/LLaMA-Factory.git

# 安装项目依赖
cd LLaMA-Factory
pip install -r requirements.txt
pip install transformers_stream_generator bitsandbytes tiktoken auto-gptq optimum autoawq
pip install --upgrade tensorflow
pip uninstall flash-attn -y

# 运行
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py

使用GPU和对ModelScope Hub的支持
2.自定义训练集并上传
self_cognition文件

 
# 自定义数据集
[
    {
        "instruction": "用户指令(必填)",
        "input": "用户输入(选填)",
        "output": "模型回答(必填)",
        "system": "系统提示词(选填)",
        "history": [
            ["第一轮指令(选填)", "第一轮回答(选填)"],
            ["第二轮指令(选填)", "第二轮回答(选填)"]
        ]
    }
]

打开LLaMA-Factory项目data文件夹下的dataset_info.json,进行上传

{
  "alpaca_en": {
    "file_name": "alpaca_data_en_52k.json",
    "file_sha1": "607f94a7f581341e59685aef32f531095232cf23"
  },
  "alpaca_zh": {
    "file_name": "alpaca_data_zh_51k.json",
    "file_sha1": "0016a4df88f523aad8dc004ada7575896824a0dc"
  },
  "alpaca_gpt4_en": {
    "file_name": "alpaca_gpt4_data_en.json",
    "file_sha1": "647f4ad447bd993e4b6b6223d1be15208bab694a"
  },
  "alpaca_gpt4_zh": {
    "file_name": "alpaca_gpt4_data_zh.json",
    "file_sha1": "3eaa3bda364ccdd59925d7448a698256c31ef845"
  },
  "identity": {
    "file_name": "identity.json",
    "file_sha1": "ffe3ecb58ab642da33fbb514d5e6188f1469ad40"
  },
  "oaast_sft": {
    "file_name": "oaast_sft.json",
    "file_sha1": "7baf5d43e67a91f9bbdf4e400dbe033b87e9757e",
    "columns": {
      "prompt": "instruction",
      "query": "input",
      "response": "output",
      "history": "history"
    }
  },
  "oaast_sft_zh": {
    "file_name": "oaast_sft_zh.json",
    "file_sha1": "a6a91f18f80f37b10ded9cf633fb50c033bf7b9f",
    "columns": {
      "prompt": "instruction",
      "query": "input",
      "response": "output",
      "history": "history"
    }
  },
  "lima": {
    "file_name": "lima.json",
    "file_sha1": "9db59f6b7007dc4b17529fc63379b9cd61640f37",
    "columns": {
      "prompt": "instruction",
      "query": "input",
      "response": "output",
      "history": "history"
    }
  },
  "glaive_toolcall": {
    "file_name": "glaive_toolcall_10k.json",
    "file_sha1": "a6917b85d209df98d31fdecb253c79ebc440f6f3",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "example": {
    "script_url": "example_dataset",
    "columns": {
      "prompt": "instruction",
      "query": "input",
      "response": "output",
      "history": "history"
    }
  },
  "guanaco": {
    "hf_hub_url": "JosephusCheung/GuanacoDataset",
    "ms_hub_url": "AI-ModelScope/GuanacoDataset"
  },
  "belle_2m": {
    "hf_hub_url": "BelleGroup/train_2M_CN",
    "ms_hub_url": "AI-ModelScope/train_2M_CN"
  },
  "belle_1m": {
    "hf_hub_url": "BelleGroup/train_1M_CN",
    "ms_hub_url": "AI-ModelScope/train_1M_CN"
  },
  "belle_0.5m": {
    "hf_hub_url": "BelleGroup/train_0.5M_CN",
    "ms_hub_url": "AI-ModelScope/train_0.5M_CN"
  },
  "belle_dialog": {
    "hf_hub_url": "BelleGroup/generated_chat_0.4M",
    "ms_hub_url": "AI-ModelScope/generated_chat_0.4M"
  },
  "belle_math": {
    "hf_hub_url": "BelleGroup/school_math_0.25M",
    "ms_hub_url": "AI-ModelScope/school_math_0.25M"
  },
  "belle_multiturn": {
    "script_url": "belle_multiturn",
    "formatting": "sharegpt"
  },
  "ultra_chat": {
    "script_url": "ultra_chat",
    "formatting": "sharegpt"
  },
  "open_platypus": {
    "hf_hub_url": "garage-bAInd/Open-Platypus",
    "ms_hub_url": "AI-ModelScope/Open-Platypus"
  },
  "codealpaca": {
    "hf_hub_url": "sahil2801/CodeAlpaca-20k",
    "ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"
  },
  "alpaca_cot": {
    "hf_hub_url": "QingyiSi/Alpaca-CoT",
    "ms_hub_url": "AI-ModelScope/Alpaca-CoT"
  },
  "openorca": {
    "hf_hub_url": "Open-Orca/OpenOrca",
    "ms_hub_url": "AI-ModelScope/OpenOrca",
    "columns": {
      "prompt": "question",
      "response": "response",
      "system": "system_prompt"
    }
  },
  "slimorca": {
    "hf_hub_url": "Open-Orca/SlimOrca",
    "formatting": "sharegpt"
  },
  "mathinstruct": {
    "hf_hub_url": "TIGER-Lab/MathInstruct",
    "ms_hub_url": "AI-ModelScope/MathInstruct",
    "columns": {
      "prompt": "instruction",
      "response": "output"
    }
  },
  "firefly": {
    "hf_hub_url": "YeungNLP/firefly-train-1.1M",
    "columns": {
      "prompt": "input",
      "response": "target"
    }
  },
  "wikiqa": {
    "hf_hub_url": "wiki_qa",
    "columns": {
      "prompt": "question",
      "response": "answer"
    }
  },
  "webqa": {
    "hf_hub_url": "suolyer/webqa",
    "ms_hub_url": "AI-ModelScope/webqa",
    "columns": {
      "prompt": "input",
      "response": "output"
    }
  },
  "webnovel": {
    "hf_hub_url": "zxbsmk/webnovel_cn",
    "ms_hub_url": "AI-ModelScope/webnovel_cn"
  },
  "nectar_sft": {
    "hf_hub_url": "mlinmg/SFT-Nectar",
    "ms_hub_url": "AI-ModelScope/SFT-Nectar"
  },
  "deepctrl": {
    "ms_hub_url": "deepctrl/deepctrl-sft-data"
  },
  "adgen": {
    "hf_hub_url": "HasturOfficial/adgen",
    "ms_hub_url": "AI-ModelScope/adgen",
    "columns": {
      "prompt": "content",
      "response": "summary"
    }
  },
  "sharegpt_hyper": {
    "hf_hub_url": "totally-not-an-llm/sharegpt-hyperfiltered-3k",
    "formatting": "sharegpt"
  },
  "sharegpt4": {
    "hf_hub_url": "shibing624/sharegpt_gpt4",
    "ms_hub_url": "AI-ModelScope/sharegpt_gpt4",
    "formatting": "sharegpt"
  },
  "ultrachat_200k": {
    "hf_hub_url": "HuggingFaceH4/ultrachat_200k",
    "ms_hub_url": "AI-ModelScope/ultrachat_200k",
    "columns": {
      "messages": "messages"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    },
    "formatting": "sharegpt"
  },
  "agent_instruct": {
    "hf_hub_url": "THUDM/AgentInstruct",
    "ms_hub_url": "ZhipuAI/AgentInstruct",
    "formatting": "sharegpt"
  },
  "lmsys_chat": {
    "hf_hub_url": "lmsys/lmsys-chat-1m",
    "ms_hub_url": "AI-ModelScope/lmsys-chat-1m",
    "columns": {
      "messages": "conversation"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "human",
      "assistant_tag": "assistant"
    },
    "formatting": "sharegpt"
  },
  "evol_instruct": {
    "hf_hub_url": "WizardLM/WizardLM_evol_instruct_V2_196k",
    "ms_hub_url": "AI-ModelScope/WizardLM_evol_instruct_V2_196k",
    "formatting": "sharegpt"
  },
  "glaive_toolcall_100k": {
    "hf_hub_url": "hiyouga/glaive-function-calling-v2-sharegpt",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "cosmopedia": {
    "hf_hub_url": "HuggingFaceTB/cosmopedia",
    "columns": {
      "prompt": "prompt",
      "response": "text"
    }
  },
  "oasst_de": {
    "hf_hub_url": "mayflowergmbh/oasst_de"
  },
  "dolly_15k_de": {
    "hf_hub_url": "mayflowergmbh/dolly-15k_de"
  },
  "alpaca-gpt4_de": {
    "hf_hub_url": "mayflowergmbh/alpaca-gpt4_de"
  },
  "openschnabeltier_de": {
    "hf_hub_url": "mayflowergmbh/openschnabeltier_de"
  },
  "evol_instruct_de": {
    "hf_hub_url": "mayflowergmbh/evol-instruct_de"
  },
  "dolphin_de": {
    "hf_hub_url": "mayflowergmbh/dolphin_de"
  },
  "booksum_de": {
    "hf_hub_url": "mayflowergmbh/booksum_de"
  },
  "airoboros_de": {
    "hf_hub_url": "mayflowergmbh/airoboros-3.0_de"
  },
  "ultrachat_de": {
    "hf_hub_url": "mayflowergmbh/ultra-chat_de"
  },
  "hh_rlhf_en": {
    "script_url": "hh_rlhf_en",
    "columns": {
      "prompt": "instruction",
      "response": "output",
      "history": "history"
    },
    "ranking": true
  },
  "oaast_rm": {
    "file_name": "oaast_rm.json",
    "file_sha1": "622d420e9b70003b210618253bd3d9d2891d86cb",
    "columns": {
      "prompt": "instruction",
      "query": "input",
      "response": "output",
      "history": "history"
    },
    "ranking": true
  },
  "oaast_rm_zh": {
    "file_name": "oaast_rm_zh.json",
    "file_sha1": "1065af1f3784dd61be5e79713a35f427b713a232",
    "columns": {
      "prompt": "instruction",
      "query": "input",
      "response": "output",
      "history": "history"
    },
    "ranking": true
  },
  "comparison_gpt4_en": {
    "file_name": "comparison_gpt4_data_en.json",
    "file_sha1": "96fa18313544e22444fe20eead7754b17da452ae",
    "ranking": true
  },
  "comparison_gpt4_zh": {
    "file_name": "comparison_gpt4_data_zh.json",
    "file_sha1": "515b18ed497199131ddcc1af950345c11dc5c7fd",
    "ranking": true
  },
  "orca_rlhf": {
    "file_name": "orca_rlhf.json",
    "file_sha1": "acc8f74d16fd1fc4f68e7d86eaa781c2c3f5ba8e",
    "ranking": true,
    "columns": {
      "prompt": "question",
      "response": "answer",
      "system": "system"
    }
  },
  "nectar_rm": {
    "hf_hub_url": "mlinmg/RLAIF-Nectar",
    "ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
    "ranking": true
  },
  "orca_dpo_de" : {
    "hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
    "ranking": true
  },
  "wiki_demo": {
    "file_name": "wiki_demo.txt",
    "file_sha1": "e70375e28eda542a90c68213640cc371898ce181",
    "columns": {
      "prompt": "text"
    }
  },
  "c4_demo": {
    "file_name": "c4_demo.json",
    "file_sha1": "a5a0c86759732f9a5238e447fecd74f28a66cca8",
    "columns": {
      "prompt": "text"
    }
  },
  "refinedweb": {
    "hf_hub_url": "tiiuae/falcon-refinedweb",
    "columns": {
      "prompt": "content"
    }
  },
  "redpajama_v2": {
    "hf_hub_url": "togethercomputer/RedPajama-Data-V2",
    "columns": {
      "prompt": "raw_content"
    },
    "subset": "default"
  },
  "wikipedia_en": {
    "hf_hub_url": "olm/olm-wikipedia-20221220",
    "ms_hub_url": "AI-ModelScope/olm-wikipedia-20221220",
    "columns": {
      "prompt": "text"
    }
  },
  "wikipedia_zh": {
    "hf_hub_url": "pleisto/wikipedia-cn-20230720-filtered",
    "ms_hub_url": "AI-ModelScope/wikipedia-cn-20230720-filtered",
    "columns": {
      "prompt": "completion"
    }
  },
  "pile": {
    "hf_hub_url": "EleutherAI/pile",
    "ms_hub_url": "AI-ModelScope/pile",
    "columns": {
      "prompt": "text"
    },
    "subset": "all"
  },
  "skypile": {
    "hf_hub_url": "Skywork/SkyPile-150B",
    "ms_hub_url": "AI-ModelScope/SkyPile-150B",
    "columns": {
      "prompt": "text"
    }
  },
  "the_stack": {
    "hf_hub_url": "bigcode/the-stack",
    "ms_hub_url": "AI-ModelScope/the-stack",
    "columns": {
      "prompt": "content"
    }
  },
  "starcoder_python": {
    "hf_hub_url": "bigcode/starcoderdata",
    "ms_hub_url": "AI-ModelScope/starcoderdata",
    "columns": {
      "prompt": "content"
    },
    "folder": "python"
  },
  "self_cognition": {
    "file_name": "self_cognition.json",
    "file_sha1": "eca3d89fa38b35460d6627cefdc101feef507eb5"
  }
}

data目录
3. 进行微调

# 运行
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py

微调Web页面

我们需要注意一下:设置正确的断点:

当报错output已经存在的时候,很有可能是因为当前断点已经设置过了,所以我们需要设置一个新的断点

微调过程图
结果如下所示:
结果图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/697469.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

类和对象(上续)

前言:本文介绍类和对象中的一些比较重要的知识点,为以后的继续学习打好基础。 目录 拷贝构造 拷贝构造的特征: 自定义类型的传值传参 自定义类型在函数中的传值返回 如果返回值时自定义的引用呢? 在什么情况下使用呢&#…

前端技术入门指南

引言 在数字化时代,前端开发成为了连接用户与数字世界的重要桥梁。无论你是对编程充满好奇的新手,还是想要拓展自己技能领域的在职人员,前端开发都是一个值得学习和探索的领域。本文将带你走进前端技术的世界,为你提供一个入门指…

前端nvm的安装和使用nodejs多版本管理2024

nvm的安装和使用 1、简介 nvm是一个管理nodejs版本的工具。在实际的开发中,项目的开发依赖需要的nodejs版本运行环境不同,此时我们就需要使用nvm来进行不同nodejs版本的切换。其实就是一个方便的node版本管理工具。 注意:如果有安装过node&a…

机器学习笔记——支持向量机

支持向量机 参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题 最大化间隔 间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将…

文心一言 VS 讯飞星火 VS chatgpt (278)-- 算法导论20.3 5题

五、假设我们创建一个包含 u 1 k u^\frac{1}{k} uk1​ 个簇(而不是全域大小为 x ↓ {\sqrt[↓]{x}} ↓x ​ 的 x ↑ {\sqrt[↑]{x}} ↑x ​ 个簇)的 vEB 树,其每个簇的全域大小为 u 1 − 1 k u ^ {1-\frac{1}{k}} u1−k1​ ,其中 k>1 &#xff0c…

AI如何创造情绪价值

随着科技的飞速发展,人工智能(AI)已经渗透到我们生活的方方面面。从智能家居到自动驾驶,从医疗辅助到金融服务,AI技术的身影无处不在。而如今,AI更是涉足了一个全新的领域——创造情绪价值。 AI已经能够处…

Docker:利用Docker搭建一个nginx服务

文章目录 搭建一个nginx服务认识nginx服务Web服务器反向代理服务器高性能特点 安装nginx启动nginx停止nginx查找nginx镜像拉取nginx镜像,启动nginx站点其他方式拉取nginx镜像信息通过 DIGEST 拉取镜像 搭建一个nginx服务 首先先认识一下nginx服务: NGI…

Discuz! X3.4免备案无执照接入支付宝微信支付插件

下载地址:Discuz! X3.4免备案无执照接入支付宝微信支付插件 [充值会员]支付宝当面付版 微信支付

【2023】LitCTF

LitCTF2023&#xff08;复现&#xff09; Web&#xff1a; 1、我Flag呢&#xff1f; ​ ctrlu 读取源码&#xff0c;在最后发现了flag&#xff1a; <!--flag is here flagNSSCTF{3d5218b9-4e24-4d61-9c15-68f8789e8c48} -->2、PHP是世界上最好的语言&#xff01;&…

Linux系统编程(十二)线程同步、锁、条件变量、信号量

线程同步&#xff1a; 协同步调&#xff0c;对公共区域数据按序访问。防止数据混乱&#xff0c;产生与时间有关的错误。数据混乱的原因 一、互斥锁/互斥量mutex 1. 建议锁&#xff08;协同锁&#xff09;&#xff1a; 公共数据进行保护。所有线程【应该】在访问公共数据前先拿…

Java里面的10个Lambda表达式必须掌握,提高生产力

目录 Java里面的10个Lambda表达式必须掌握&#xff0c;提高生产力 前言 1. 使用Lambda表达式进行集合遍历 2. 使用Lambda表达式进行集合过滤 3. 使用Lambda表达式进行集合映射 4. 使用Lambda表达式进行集合排序 5. 使用Lambda表达式进行集合归约 6. 使用Lambda表达式进…

idea最新专业版安装+maven配置教程!

本教程适用于 J B 全系列产品&#xff0c;包括 Pycharm、IDEA、WebStorm、Phpstorm、Datagrip、RubyMine、CLion、AppCode 等。 &#xff08;直接复制&#xff0c;拿走不谢&#xff09; 9H1390TRAK-eyJsaWNlbnNlSWQiOiI5SDEzOTBUUkFLIiwibGljZW5zZWVOYW1lIjoi5rC45LmF5rA5rS7I…

在VMware虚拟机上安装win10 跳过 通过microsoft登录

在VMware虚拟机上安装win10 跳过 “通过microsoft登录” 配置虚拟机&#xff0c;将网卡断开&#xff0c; 具体操作&#xff1a; 虚拟机/设置/硬件/网络适配器/设备状态&#xff0c;取消已连接和启动时连接的两个对号&#xff0c; 再把虚拟机重启&#xff0c;然后就可以跳过这个…

苹果WWDC大会AI亮点:大揭晓

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

IT学习笔记--Flink

概况&#xff1a; Flink 是 Apache 基金会旗下的一个开源大数据处理框架。目前&#xff0c;Flink 已经成为各大公司大数据实时处理的发力重点&#xff0c;特别是国内以阿里为代表的一众互联网大厂都在全力投入&#xff0c;为 Flink 社区贡献了大量源码。 Apache Flink 是一个…

day27回溯算法part03| 39. 组合总和 40.组合总和II 131.分割回文串

39. 组合总和 题目链接/文章讲解 | 视频讲解 本题是 集合里元素可以用无数次&#xff0c;那么和组合问题的差别 其实仅在于 startIndex上的控制 class Solution { public:int sum;vector<int> path;vector<vector<int>> result;void backtracking(vector<…

MySQL-数据处理(1)

029-数据处理函数之获取字符串长度 select length(我是Cupid); select char_length(我是Cupid);concat (concatenate) select concat(cu, pid, so, handsome);030-去除字符串前后空白-trim select trim( a b c );select trim(leading 0 from 000110); select t…

1688商品库存查询

目录 下载安装与运行 功能简介 快速入门&#xff08;视频&#xff09; 当前支持的导出项 常用功能 历史商品是什么意思 粘贴商品有什么要求 导入商品需要什么样的模板 单个商品的查看 查看单个商品详情 下载安装与运行 下载、安装与运行 语雀 功能简介 最近一次测…

Python图像处理入门学习——基于霍夫变换的车道线和路沿检测

文章目录 前言一、实验内容与方法二、视频的导入、拆分、合成2.1 视频时长读取2.2 视频的拆分2.3 视频的合成 三、路沿检测3.1 路沿检测算法整体框架3.2 尝试3.3 图像处理->边缘检测(原理)3.4 Canny算子边缘检测(原理)3.5 Canny算子边缘检测(实现)3.5.1 高斯滤波3.5.2 图像转…

RK3568平台(显示篇)FrameBuffer 应用编程

一.FrameBuffer介绍 FrameBuffer&#xff08;帧缓冲器&#xff09;是一种计算机图形学概念&#xff0c;用于在显示器上显示图形和文本。在 计算机显示系统中&#xff0c;FrameBuffer 可以看作是显存的一个抽象概念&#xff0c;用于存储显示屏幕上显示 的像素点的颜色和位置信息…