利用医学Twitter进行病理图像分析的视觉-语言基础模型| 文献速递-视觉通用模型与疾病诊断

Title

题目

A visual–language foundation model for pathology image analysis using medical Twitter

利用医学Twitter进行病理图像分析的视觉-语言基础模型

01

文献速递介绍

缺乏公开可用的医学图像标注是计算研究和教育创新的一个重要障碍。同时,许多医生在公共论坛上(如医学Twitter)分享了去标识化的图像和大量知识。在这里,我们利用这些众包平台来策划OpenPath,这是一个包含208,414张病理图像与自然语言描述配对的大型数据集。我们通过开发病理语言-图像预训练(PLIP)来展示这一资源的价值,这是一种多模态人工智能,具有图像和文本理解能力,它是在OpenPath上进行训练的。PLIP在四个外部数据集上对新的病理图像进行分类的性能达到了最先进水平:对于零样本分类,与先前的对比语言-图像预训练模型相比,PLIP的F1分数为0.565–0.832,而先前模型的F1分数为0.030–0.481。在PLIP嵌入之上训练一个简单的监督分类器,相对于使用其他监督模型嵌入,也实现了F1分数的2.5%提高。此外,PLIP使用户能够通过图像或自然语言搜索检索类似案例,极大地促进了知识共享。我们的方法表明,公开分享的医学信息是一种巨大的资源,可以用来开发医学人工智能,以增强诊断、知识共享和教育。

Method

方法

Description of the OpenPath dataset

Release policy.In accordance with the policy and regulation of Twitter and other entities including LAION, all information provided in the datasets is linked to the original source of the data. Specifically, data that have been collected from Twitter are released in the form of Tweet IDs; data that have been collected from LAION are released in the form of URLs to images. Interested users will need to refer to the original sources to understand if their usage is compliant with the policies and regulations.OpenPath

数据集描述

发布政策。根据Twitter和其他实体(包括LAION)的政策和规定,数据集中提供的所有信息都与数据的原始来源相关联。具体来说,从Twitter收集的数据以推文ID的形式发布;从LAION收集的数据以图像的URL形式发布。感兴趣的用户需要参考原始来源,了解其使用是否符合政策和规定。

Results

结果

Creating OpenPath from Twitter and other public sources

The USCAP and the Pathology Hashtag Ontology projects24 recommends 32 Twitter pathology subspecialty-specific hashtags18,19. We used these 32 hashtags to retrieve relevant tweets from 21 March 2006 (the date of the first Twitter post) to 15 November 2022 (Fig. 1a) to establish so far the largest public pathology dataset with natural language descriptions for each image: OpenPath. The detailed definition of each hashtag is presented in Extended Data Table 1. We followed the usage policy and guidelines from Twitter and other entities in retrieving the data. To ensure data quality, OpenPath followed rigorous protocols for cohort inclusion and exclusion, including the removal of retweets, sensitive tweets and non-pathology images, as well as additional text cleaning (Fig. 1a, Extended Data Fig. 1 and Methods). The final OpenPath dataset (Fig. 1b) consists of: (1) tweets: 116,504 image–text pairs from Twitter posts (tweets) across 32 pathology subspecialty-specific hashtags (Fig. 1c); (2) replies: 59,869 image–text pairs from the associated replies that received the highest number of likes in the tweet, if applicable (Fig. 1c); and (3) PathLAION: 32,041 additional image–text pairs scraped from the Internet and the LAION dataset. The captions in OpenPath used a median number of 17 words (Fig. 1d and Supplementary Table 1) to describe the medical conditions in the corresponding images. The detailed dataset extraction and description are elaborated further in the Methods, and the complete dataset of the inclusion–exclusion procedure is demonstrated in Extended Data Fig. 1.

美国病理学会(USCAP)和病理学标签本体论(Pathology Hashtag Ontology)项目推荐了32个Twitter病理学亚专业特定的标签。我们使用这32个标签从2006年3月21日(第一条Twitter帖子的日期)到2022年11月15日检索相关推文,建立迄今为止具有每个图像自然语言描述的最大公共病理学数据集:OpenPath。每个标签的详细定义见扩展数据表1。我们遵循了Twitter和其他实体的使用政策和指南来检索数据。为确保数据质量,OpenPath遵循了严格的入组和排除协议,包括删除转发、敏感推文和非病理学图像,以及进行额外的文本清理。最终的OpenPath数据集包括:(1)推文:来自32个病理学亚专业特定标签的Twitter帖子(推文)的116,504个图像-文本对;(2)回复:来自推文相关回复的59,869个图像-文本对,如果适用,则是获得最多喜欢的回复;(3)PathLAION:从互联网和LAION数据集中获取的32,041个额外的图像-文本对。OpenPath中的标题平均使用17个词来描述相应图像中的医学状况。详细的数据集提取和描述在方法中进一步阐述,包括入组排除过程的完整数据集在扩展数据图1中展示。

Figure

图片

Fig. 1 | Overview of the study. a, Flowchart of data acquisition from medical Twitter. b, Overview of the OpenPath dataset. c, Total number of available image–text pairs from tweets and replies within each Twitter hashtag (sorted in alphabetical order). Replies are those that received the highest number of likes inTwitter posts, if applicable. d, Density plot of the number of words per sentence in the OpenPath dataset. e, The process of training the PLIP model with paired image–text dataset via contrastive learning. f, Graphical demonstration of the contrastive learning training process.

图1 | 研究概览。a,从医学Twitter获取数据的流程图。b,OpenPath数据集概述。c,每个Twitter标签中可用的推文和回复中图像-文本对的总数(按字母顺序排序)。回复是在Twitter帖子中获得最多喜欢的回复,如果适用。d,OpenPath数据集中每个句子的平均词数的密度图。e,使用对比学习通过成对的图像-文本数据集训练PLIP模型的过程。f,对比学习训练过程的图形演示。

图片

Fig. 2 | PLIP predicts new classes via zero-shot transfer learning. a, Graphical illustration of zero-shot classification. The classification output is determined by selecting the candidate text with the highest cosine similarity to the input image. b, Four external validation datasets: Kather colon dataset with nine tissue types; PanNuke dataset (benign and malignant tissues); DigestPath dataset (benign and malignant tissues); and WSSS4LUAD dataset (tumor and normal tissues). c, Zero-shot performances with weighted F1 scores across the four datasets. Note that the performances in the Kather colon dataset are based on a nineclass zero-shot learning evaluation, while the performances for other datasets are based on binary zero-shot learning evaluation. Within each box plot, the center line represents the mean and the error bar indicates the 95% CI. Number of test samples for each dataset: Kather colon (n = 7,180); PanNuke (n = 1,888); DigestPath (n = 18,814); and WSSS4LUAD (n = 3,028). d, Confusion matrix of the Kather colon dataset. The actual and predicted labels are displayed in rows and columns, respectively. e, Zero-shot evaluation of the PanNuke dataset within each organ type.be searched. We compared each target image with all other images via the Recall@10 and Recall@50, which measures the number of images in the top 10 and top 50 retrieved that originate from the same Twitter post. The benchmark comparison was conducted by comparing PLIP with three baseline models: CLIP; MuDiPath; and SISH5 . The results presented in Fig. 5c suggested that all four models were capable of retrieving relevant images, while the PLIP model achieved the best performance with Recall@10 = 0.646 (compared to CLIP at 0.353,

图2 | PLIP通过零样本迁移学习预测新类别。a,零样本分类的图形说明。分类输出是通过选择与输入图像具有最高余弦相似度的候选文本来确定的。b,四个外部验证数据集:Kather结肠数据集(九种组织类型);PanNuke数据集(良性和恶性组织);DigestPath数据集(良性和恶性组织);以及WSSS4LUAD数据集(肿瘤和正常组织)。c,在四个数据集上通过加权F1分数进行的零样本性能评估。请注意,Kather结肠数据集中的性能是基于九类零样本学习评估,而其他数据集的性能则基于二分类零样本学习评估。在每个箱线图中,中心线表示均值,误差条表示95%的置信区间。每个数据集的测试样本数:Kather结肠(n = 7,180);PanNuke(n = 1,888);DigestPath(n = 18,814);和WSSS4LUAD(n = 3,028)。d,Kather结肠数据集的混淆矩阵。实际标签和预测标签分别显示在行和列中。e,在每个器官类型内对PanNuke数据集进行零样本评估。

图片

Fig. 3 | Image embedding analysis and linear probing results. a, Image embeddings generated from the PLIP model in the Kather colon dataset. b, Image embeddings generated from the PLIP model in the PanNuke dataset. c, Image embeddings generated from the PLIP model in the DigestPath dataset. *d, Image embeddings generated from the PLIP model in the WSSS4LUAD dataset. e, Graphical illustration of linear probing transfer learning. ‘Frozen’ means that the loss from the linear classifier will not be used to update the parameters of the image encoder. f**, F1 score in testing sets with the mean (± s.d.) from five repeated experiments with different random seeds. The ‘Average’ column shows the averaged performances across the four datasets. P values were calculated using a two-sided Student’s t-test and are presented in the bottom two rows.

图3 | 图像嵌入分析和线性探测结果。a,在Kather结肠数据集中由PLIP模型生成的图像嵌入。b,在PanNuke数据集中由PLIP模型生成的图像嵌入。c,在DigestPath数据集中由PLIP模型生成的图像嵌入。d,在WSSS4LUAD数据集中由PLIP模型生成的图像嵌入。e,线性探测迁移学习的图形说明。'Frozen'表示线性分类器的损失不会用于更新图像编码器的参数。f,在不同随机种子下进行的五次重复实验的测试集F1分数的均值(± 标准差)。'Average'列显示了四个数据集的平均性能。P值是使用双侧学生t检验计算的,并显示在底部两行中。

图片

Fig. 4 | Text-to-image retrieval for pathology images. a, Graphical illustration of pathology image retrieval from text input. b, Density plot of the number of words per sentence across the four validation datasets. c, Description of the Twitter validation dataset and an example text caption. d, Descriptions of the PathPedia, PubMed and Books datasets and example text captions. e, Image retrieval performances across the validation datasets. f, Text-to-image retrieval performances for Recall@10 within each of the pathology subspecialty-specific hashtags. g**, Spearman correlations between the number of candidates and fold changes for Recall@10 when comparing the PLIP model with CLIP and random, respectively. Regression estimates are displayed with the 95% CIs in gray or purple.

图4 | 病理图像的文本到图像检索。a,从文本输入中检索病理图像的图形说明。b,在四个验证数据集中每个句子的平均词数的密度图。c,Twitter验证数据集的描述和一个示例文本标题。d,PathPedia、PubMed和Books数据集的描述以及示例文本标题。e,在验证数据集上的图像检索性能。f,在每个病理学亚专业特定标签内的Recall@10的文本到图像检索性能。g,当将PLIP模型与CLIP和随机模型进行比较时,候选数量和Recall@10的折叠变化之间的Spearman相关性。回归估计值用灰色或紫色显示,并显示95%的置信区间。

图片

Fig. 5 | Image-to-image retrieval for pathology images. a, Graphical illustration of image-to-image retrieval. b, Illustration of image-to-image retrieval analysis on the Twitter validation dataset. c, Image-to-image retrieval performances on the Twitter validation dataset. The values in the boxes represent the Recall@10 and Recall@50 scores and the fold changes compared to random performances. d, Image-to-image retrieval performances on the Kather colon dataset. e, Imageto-image retrieval performances on the PanNuke dataset. f, Image-to-image retrieval performances on the KIMIA Path24C dataset. g, Examples of text-toimage retrieval. h, Examples of image-to-image retrieval (featuring the mitotic figure).

图5 | 病理图像的图像到图像检索。a,图像到图像检索的图形说明。b,在Twitter验证数据集上进行图像到图像检索分析的说明。c,Twitter验证数据集上的图像到图像检索性能。方框中的值表示Recall@10和Recall@50分数,以及与随机性能相比的折叠变化。d,Kather结肠数据集上的图像到图像检索性能。e,PanNuke数据集上的图像到图像检索性能。f,KIMIA Path24C数据集上的图像到图像检索性能。g,文本到图像检索的示例。h,图像到图像检索的示例(包括有丝分裂图)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696498.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux - 信号概念 信号产生

Linux - 信号概念 & 信号产生 信号概念信号产生软件信号killraiseabortalarm 硬件信号键盘产生信号硬件中断 信号概念 信号是进程之间事件异步通知的一种方式 在Linux命令行中,我们可以通过ctrl c来终止一个前台运行的进程,其实这就是一个发送信号的…

Java面试_数据库篇_优化,事务,Mysql

Java面试_数据库篇_优化,事务,Mysql 优化如何定位慢查询方案一: 开源工具方案二: Mysql自带慢日志 如何分析慢SQL语句索引介绍索引聚簇索引和非聚簇索引,回表查询覆盖索引,超大分页优化索引创建的原则索引失效 谈谈sql优化的经验 事务事务特性隔离级别un…

vue-2 组件传值

组件关系分类 父子关系非父子关系 父子通信流程 父组件通过props将数据传递给子组件 给子组件以添加属性的方式传值子组件内部通过 props 接收模板中直接使用 props 接收的值 父组件 Parent.vue <template><div class"parent" style"border: 3px s…

力扣 T62 不同路径

题目 连接 思路 思路1 &#xff1a; BFS爆搜 class Solution { public:queue<pair<int,int>>q;int uniquePaths(int m, int n) {q.push({1,1}); // 起始位置vector<pair<int, int>> actions;actions.push_back({0, 1}); // 向下actions.push_bac…

论文中eps格式图片制作

在提交论文终稿时&#xff0c;有时需要提交论文中图片的eps格式&#xff0c;这里记录一下eps格式图片制作的过程&#xff0c;方便以后查阅。 论文中eps格式图片制作 PPT绘制的图片转换为eps格式使用代码生成的图片Latex中显示的图片大小跟Ai中设定画板的大小不一致 PPT绘制的图…

ABB机械人模型下载

可以下载不同格式的 https://new.abb.com/products/robotics/zh/robots/articulated-robots/irb-6700 step的打开各部件是分开的&#xff0c;没有装配在一起&#xff0c;打开看单个零件时&#xff0c;我们会发现其各零件是有装配的定位关系的。 新建一个装配环境&#xff0c;点…

ctfshow-web入门-命令执行(web53-web55)

目录 1、web53 2、web54 3、web55 1、web53 这里的代码有点不一样&#xff0c;说一下这两种的区别&#xff1a; &#xff08;1&#xff09;直接执行 system($c); system($c);这种方式会直接执行命令 $c 并将命令的输出直接发送到标准输出&#xff08;通常是浏览器&#xff…

基于机器学习和深度学习的NASA涡扇发动机剩余使用寿命预测(C-MAPSS数据集,Python代码,ipynb 文件)

以美国航空航天局提供的航空涡扇发动机退化数据集为研究对象&#xff0c;该数据集包含多台发动机从启动到失效期间多个运行周期的多源传感器时序状态监测数据&#xff0c;它们共同表征了发动机的性能退化情况。为减小计算成本&#xff0c;需要对原始多源传感器监测数据进行数据…

软件测试--Mysql快速入门

文章目录 软件测试-mysql快速入门sql主要划分mysql常用的数据类型sql基本操作常用字段的约束&#xff1a;连接查询mysql内置函数存储过程视图事务索引 软件测试-mysql快速入门 sql主要划分 sql语言主要分为&#xff1a; DQL&#xff1a;数据查询语言&#xff0c;用于对数据进…

SpringBoot中实现一个通用Excel导出功能

SpringBoot中实现一个通用Excel导出功能 文章目录 SpringBoot中实现一个通用Excel导出功能这个导出功能的特色看效果代码解析1、依赖2、Excel 入参(ExcelExportRequest)3、Excel 出参(ExcelExportResponse)4、ExcelExportField5、ExcelExportUtils 工具类6、ExcelHead 头部…

鸿蒙开发接口安全:【@ohos.userIAM.userAuth (用户认证)】

用户认证 说明&#xff1a; 本模块首批接口从API version 6开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 导入模块 import userIAM_userAuth from ohos.userIAM.userAuth;完整示例 // API version 6 import userIAM_userAuth from ohos.use…

AI全栈工程师的新舞台:Coze(扣子)

前言 在当前科技飞速发展的背景下&#xff0c;Coze作为一款引领潮流的AI应用平台&#xff0c;正以破竹之势重塑着我们对于智能应用的认知。Coze不仅仅是一个工具&#xff0c;它是一个集合了前沿AI技术、高效开发环境与创意无限的应用生态于一体的创新平台&#xff0c;旨在让每…

RabbitMQ-工作模式(Topics模式RPC模式Publisher Confirms模式)

文章目录 Topics模式topic代码示例 RPC模式客户端界面回调队列关联ID总结RPC代码示例 Publisher Confirms模式概述在通道上启用发布者确认单独发布消息批量发布消息异步处理发布者确认总结总体代码示例 更多相关内容可查看 Topics模式 在Topics中&#xff0c;发送的消息不能具…

QT 信号和槽 信号关联到信号示例 信号除了可以绑定槽以外,信号还可以绑定信号

信号除了可以关联到槽函数&#xff0c;还可以关联到类型匹配的信号&#xff0c;实现信号的接力触发。上个示例中因为 clicked 信号没有参数&#xff0c;而 SendMsg 信号有参数&#xff0c;所以不方便直接关联。本小节示范一个信号到信号的关联&#xff0c;将按钮的 clicked 信号…

---java 抽象类 和 接口---

抽象类 再面向对对象的语言中&#xff0c;所以的对象都是通过类来描述的&#xff0c;但如果这个类无法准确的描述对象的 话&#xff0c;那么就可以把这个类设置为抽象类。 实例 这里用到abstract修饰&#xff0c;表示这个类或方法是抽象方法 因为会重写motifs里的show方法…

【已解决】FileNotFoundError: [Errno 3] No such file or directory: ‘xxx‘

&#x1f60e; 作者介绍&#xff1a;我是程序员行者孙&#xff0c;一个热爱分享技术的制能工人。计算机本硕&#xff0c;人工制能研究生。公众号&#xff1a;AI Sun&#xff0c;视频号&#xff1a;AI-行者Sun &#x1f388; 本文专栏&#xff1a;本文收录于《AI实战中的各种bug…

游戏服务器工程实践一:百万级同时在线的全区全服游戏

我应该有资格写这篇文章&#xff0c;因为亲手设计过可以支撑百万级同时在线的全区全服类型的游戏服务器架构。 若干年前我在某公司任职时&#xff0c;参与研发过一款休闲类型的游戏&#xff0c;由 penguin 厂独代。研发的时候&#xff0c;p 厂要求我们的游戏服务器要能支撑百万…

如何自我认同?是否需要执着于社会性认同?

一、自我认同与社会性认同 自我认同与社会性认同是两个相关但又有所区别的概念&#xff0c;它们分别反映了个体在内心深处对自身价值的认知&#xff0c;以及外界&#xff08;尤其是社会&#xff09;对个体价值的评价与接纳。 自我认同 自我认同是指个体基于自身的价值观、能…

【C语言】青蛙跳台阶问题 - 递归算法(一种思路,针对三种不同的情况)

文章目录 1. 前言2. 题目和分析2.1 代码实现2.2 反思 (重点) 3.题目二&#xff08;变式&#xff09;3.1 分析3.2 代码实现 4. 题目三&#xff08;变式&#xff09;4.1 分析4.2 代码实现 1. 前言 相信大家看到青蛙跳台阶问题时&#xff0c;第一时间就会想到递归。那你知道为什么…

暴雨推出X705显示器:23.8英寸100Hz IPS屏

IT资讯 6月 7 日消息&#xff0c;日前&#xff0c;暴雨发布了一款 23.8 英寸 IPS 显示器&#xff0c;直屏、支持 100Hz 刷新率。 据官方介绍&#xff0c;X705 显示器分辨率为 19201080&#xff0c;亮度为 300 尼特&#xff08;典型值&#xff09;&#xff0c;对比度 1000:1&…