竞赛项目 深度学习图像风格迁移 - opencv python

文章目录

  • 0 前言
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像风格迁移 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):
    content_layers = [('relu3_3', 1.0)]
    content_loss = 0.0
    # 逐个取出衡量内容损失的vgg层名称及对应权重
    for layer_name, weight in content_layers:

        # 计算特征矩阵
        p = get_vgg(content_img, layer_name)
        x = get_vgg(rand_img, layer_name)
        # 长x宽xchannel
        M = p.shape[1] * p.shape[2] * p.shape[3]

        # 根据公式计算损失,并进行累加
        content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight

    # 将损失对层数取平均
    content_loss /= len(content_layers)
    return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):
    x = tf.reshape(x, (size, deep))
    g = tf.matmul(tf.transpose(x), x)
    return g

def style_loss(style_img, rand_img):
    style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]
    style_loss = 0.0
    # 逐个取出衡量风格损失的vgg层名称及对应权重
    for layer_name, weight in style_layers:

        # 计算特征矩阵
        a = get_vgg(style_img, layer_name)
        x = get_vgg(rand_img, layer_name)

        # 长x宽
        M = a.shape[1] * a.shape[2]
        N = a.shape[3]

        # 计算gram矩阵
        A = gram(a, M, N)
        G = gram(x, M, N)

        # 根据公式计算损失,并进行累加
        style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
    # 将损失对层数取平均
    style_loss /= len(style_layers)
    return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():
            # 生成图片
            rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)
            with tf.Session() as sess:
    
                content_img = cv2.imread('content.jpg')
                style_img = cv2.imread('style.jpg')
            
                # 计算loss值
                cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)
                optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
            
                sess.run(tf.global_variables_initializer())
                
                for step in range(TRAIN_STEPS):
                    # 训练
                    sess.run([optimizer,  rand_img])
            
                    if step % 50 == 0:
                        img = sess.run(rand_img)
                        img = np.clip(img, 0, 255).astype(np.uint8)
                        name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                        cv2.imwrite(name, img)
    
    
    

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():
    layers=(
        'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
        'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
        'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
        'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
        'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
    )
    vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
    weights = vgg['layers'][0]

    network={}
    net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
    network['input'] = net
    for i,name in enumerate(layers):
        layer_type=name[:4]
        if layer_type=='conv':
            kernels = weights[i][0][0][0][0][0]
            bias = weights[i][0][0][0][0][1]
            conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
            net=tf.nn.relu(conv + bias)
        elif layer_type=='pool':
            net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
        network[name]=net
    return network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:



    import tensorflow as tf
    import numpy as np
    import scipy.io
    import cv2
    import scipy.misc
    
    HEIGHT = 300
    WIGHT = 450
    LEARNING_RATE = 1.0
    NOISE = 0.5
    ALPHA = 1
    BETA = 500
    
    TRAIN_STEPS = 200
    
    OUTPUT_IMAGE = "D://python//img"
    STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
    CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]


    def vgg19():
        layers=(
            'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
            'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
            'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
            'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
            'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
        )
        vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
        weights = vgg['layers'][0]
    
        network={}
        net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
        network['input'] = net
        for i,name in enumerate(layers):
            layer_type=name[:4]
            if layer_type=='conv':
                kernels = weights[i][0][0][0][0][0]
                bias = weights[i][0][0][0][0][1]
                conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
                net=tf.nn.relu(conv + bias)
            elif layer_type=='pool':
                net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
            network[name]=net
        return network


    # 求gamm矩阵
    def gram(x, size, deep):
        x = tf.reshape(x, (size, deep))
        g = tf.matmul(tf.transpose(x), x)
        return g


    def style_loss(sess, style_neck, model):
        style_loss = 0.0
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = style_neck[layer_name]
            x = model[layer_name]
            # 长x宽
            M = a.shape[1] * a.shape[2]
            N = a.shape[3]
    
            # 计算gram矩阵
            A = gram(a, M, N)
            G = gram(x, M, N)
    
            # 根据公式计算损失,并进行累加
            style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
            # 将损失对层数取平均
        style_loss /= len(STYLE_LAUERS)
        return style_loss


    def content_loss(sess, content_neck, model):
        content_loss = 0.0
        # 逐个取出衡量内容损失的vgg层名称及对应权重
    
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = content_neck[layer_name]
            x = model[layer_name]
            # 长x宽xchannel
    
            M = p.shape[1] * p.shape[2]
            N = p.shape[3]
    
            lss = 1.0 / (M * N)
            content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight
            # 根据公式计算损失,并进行累加
    
        # 将损失对层数取平均
        content_loss /= len(CONTENT_LAYERS)
        return content_loss


    def random_img(height, weight, content_img):
        noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])
        random_img = noise_image * NOISE + content_img * (1 - NOISE)
        return random_img

   

    def get_neck(sess, model, content_img, style_img):
        sess.run(tf.assign(model['input'], content_img))
        content_neck = {}
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = sess.run(model[layer_name])
            content_neck[layer_name] = p
        sess.run(tf.assign(model['input'], style_img))
        style_content = {}
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = sess.run(model[layer_name])
            style_content[layer_name] = a
        return content_neck, style_content


    def main():
        model = vgg19()
        content_img = cv2.imread('D://a//content1.jpg')
        content_img = cv2.resize(content_img, (450, 300))
        content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
        style_img = cv2.imread('D://a//style1.jpg')
        style_img = cv2.resize(style_img, (450, 300))
        style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
    
        # 生成图片
        rand_img = random_img(HEIGHT, WIGHT, content_img)
    
        with tf.Session() as sess:
            # 计算loss值
            content_neck, style_neck = get_neck(sess, model, content_img, style_img)
            cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
    
            sess.run(tf.global_variables_initializer())
            sess.run(tf.assign(model['input'], rand_img))
            for step in range(TRAIN_STEPS):
                print(step)
                # 训练
                sess.run(optimizer)
    
                if step % 10 == 0:
                    img = sess.run(model['input'])
                    img += [128, 128, 128]
                    img = np.clip(img, 0, 255).astype(np.uint8)
                    name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                    img = img[0]
                    cv2.imwrite(name, img)
    
            img = sess.run(model['input'])
            img += [128, 128, 128]
            img = np.clip(img, 0, 255).astype(np.uint8)
            cv2.imwrite("D://end.jpg", img[0])
    
    main()



7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/69444.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

消息中间件 Asio (C++)

折腾了一上午,看到这个结果的时候泪目了兄弟闷,讲真。我的asio客户端成功收到服务端发来的消息了。虽然这确实是极其智障又简单的入门哈哈 下载独立版本 asio网络通信库新建cmake工程,CMakeLists.txt加载asioasio最简单的服务端和客户端代码…

echarts 横向柱状图

<template><div ref"chart" style"height: 100%"></div> </template><script> import * as echarts from "echarts"; var cate ["质量通病1", "质量通病2", "质量通病3", "质…

【C++】static_cast基本用法(详细讲解)

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

Kotlin~Mediator中介者模式

概念 创建一个中介来降低对象之间的耦合度&#xff0c;关系”多对多“变为“一对多”。 角色介绍 Mediator&#xff1a;抽象中介者&#xff0c;接口或者抽象类。ConcreteMediator&#xff1a;中介者具体实现&#xff0c;实现中介者接口&#xff0c;定义一个List管理Colleagu…

【前端】CSS垂直居中的7种方法

文章目录 line-height绝对定位margin:autoflex绝对定位margin:负值定位transformvertical-align:middledisplay:table-cell思维导图 前文&#xff1a;【前端】CSS水平居中的6种方法_karshey的博客-CSDN博客 有很多相似的部分。 line-height 适用于单行的行内元素设置line-he…

uniapp 左右滑动切换页面并切换tab

实现效果如图 要实现底部内部的左右滑动切换带动上方tab栏的切换&#xff0c;并且下方内容要实现纵向滚动 &#xff0c;所以需要swiper&#xff0c;swiper-item,scroll-view组合使用 tab栏部分 <view class"tabs"><view class"tab_item" v-for&…

由于找不到msvcp100.dll无法继续执行代码怎么解决

当遇到程序无法正常运行&#xff0c;提示缺少msvcp100.dll文件时&#xff0c;最初的反应可能是困惑和不知所措。然而&#xff0c;通过修复msvcp100.dll文件&#xff0c;我发现这个问题实际上并不复杂&#xff0c;并且可以通过一些简单的步骤解决。 在修复msvcp100.dll文件的时候…

【FAQ】视频监控EasyCVR平台登录密码忘记?如何通过navicat连接数据库进行修改?

TSINGSEE青犀视频监控管理平台EasyCVR可以根据不同的应用场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上&#xff0c;平台可实现视频实时直播、云端录像、云存储、回放与检索、告警上报、视频快照、…

DAY02_Spring—第三方资源配置管理Spring容器Spring注解开发Spring整合Mybatis和Junit

目录 一 第三方资源配置管理1 管理DataSource连接池对象问题导入1.1 管理Druid连接池1.2 管理c3p0连接池 2 加载properties属性文件问题导入2.1 基本用法2.2 配置不加载系统属性2.3 加载properties文件写法 二 Spring容器1 Spring核心容器介绍问题导入1.1 创建容器1.2 获取bean…

REDIS集群

目录 前言 一、概述 二、架构细节 三、选举过程 四、搭建 前言 Redis集群是指将多个Redis节点组成一个集群&#xff0c;通过节点间的数据分布和协调来提供高可用性和性能的数据库解决方案。每个节点可以存储数据&#xff0c;处理请求&#xff0c;并与其他节点进行通信&#xff…

RestTemplate 请求转发异常 ERR_CONTENT_DECODING_FAILED 200 (OK)

#1 问题描述 在基于Spring Boot的项目中实现了请求转发&#xff08;使用 RestTemplate 的 exchange 方法&#xff09;的功能&#xff0c;忽然在前端报net::ERR_CONTENT_DECODING_FAILED 200 (OK)的错误&#xff0c;后端及上游系统日志均显示请求已完成。 #2 原因探寻 上述错…

PBR材质理解整理

PBR Material 草履虫都能看懂的PBR讲解&#xff08;迫真&#xff09; 先前看了很多遍类似的了&#xff0c;结合《Unity Shader 入门精要》中的内容整理了下便于以后理解&#xff0c;以后有补充再添加。 光与材质相交会发生散射和吸收&#xff0c;散射改变光的方向&#xff0c…

面部表情识别4:C++实现表情识别(含源码,可实时检测)

面部表情识别4&#xff1a;C实现表情识别(含源码&#xff0c;可实时检测) 目录 面部表情识别4&#xff1a;C实现表情识别(含源码&#xff0c;可实时检测) 1.面部表情识别方法 2.人脸检测方法 3.面部表情识别模型(Python) &#xff08;1&#xff09; 面部表情识别模型的训练…

Kuebernetes资源控制管理

第四阶段 时 间&#xff1a;2023年8月11日 参加人&#xff1a;全班人员 内 容&#xff1a; Kuebernetes资源控制管理 目录 Kubectl命令工具 一、kubectl 命令行的语法 二、kubectl命令列表 三、使用 Kubectl 工具容器资源 &#xff08;一&#xff09;创建Pod &…

新疆大学841软件工程考研

1&#xff0e;软件生产的发展经历了三个阶段&#xff0c;分别是____、程序系统时代和软件工程时代时代。 2&#xff0e;可行性研究从以下三个方面研究每种解决方法的可行性&#xff1a;经济可行性、社会可行性和_____。 3&#xff0e;HIPO图的H图用于描述软件的层次关系&…

git强推覆盖其他项目分支

git强推分支&#xff0c;覆盖其他分支&#xff1b; 操作&#xff1a; 下载branch-1.3代码&#xff1b; $ git clone gitlabgitlab.zte.net:zte-dba-service/branch.git $ git remote add origin2 gitlabgitlab.zte.net:zte-service/branch.git $ git push origin2 master -f注…

同一局域网共享一个打印机方法

文章目录 需求描述设备连接情况配置网络凭证 需求描述 pc2想直接打印&#xff0c;而不是每次存到u盘&#xff0c;再拿到pc1&#xff0c;打印&#xff0c;实现本机打印 设备连接情况 配置 &#xff08;1&#xff09;pc1设置 ①共享打印机操作 控制面板——>设备和打印机—…

使用gitee创建远程maven仓库

1. 创建一个项目作为远程仓库 2. 打包项目发布到远程仓库 id随意&#xff0c;url是打包到哪个文件夹里面 在需要打包的项目的pom中添加 <distributionManagement><repository><id>handsomehuang-maven</id><url>file:D:/workspace/java/2023/re…

全面讲解|DCMM数据管理能力成熟度及各地政策汇总

信息技术与经济社会的交汇融合引发了数据爆发式增长。数据蕴含着重要的价值&#xff0c;已成为国家基础性战略资源&#xff0c;正日益对全球生产、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力产生重要影响。数据价值发挥的前提是管理好数据&#xff0c;…

【Axure教程】账单列表和详情

账单列表和详情页在支付系统中不仅是用户了解财务状况和跟踪交易的关键工具&#xff0c;还有助于提高支付安全性、解决问题以及满足法律和财务要求。因此&#xff0c;设计一个清晰、易用且功能丰富的账单管理系统对于支付系统的成功运营和用户满意度至关重要。 今天作者就教大…