面部表情识别4:C++实现表情识别(含源码,可实时检测)

面部表情识别4:C++实现表情识别(含源码,可实时检测)

目录

面部表情识别4:C++实现表情识别(含源码,可实时检测)

 1.面部表情识别方法

2.人脸检测方法

3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

(2) 将Pytorch模型转换ONNX模型

(3) 将ONNX模型转换为TNN模型

4.面部表情识别模型C/C++部署

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

(7)Demo测试效果 

5.项目源码下载


这是项目《面部表情识别》系列之《C++实现表情识别(含源码,可实时检测)》,主要分享将Python训练后的面部表情识别模型(mobilenet_v2)部署到C/C++平台。我们将开发一个简易的、可实时运行的面部表情识别的C/C++ Demo。准确率还挺高的,采用轻量级mobilenet_v2模型的面部表情识别准确率也可以高达94.72%左右,基本满足业务性能需求。C/C ++版本表情识别模型推理支持CPU和GPU加速,开启GPU(OpenCL)加速,可以达到实时的检测识别效果,基本满足业务的性能需求。

先展示一下,C/C++版本的面部表情识别Demo效果(不同表情用不同的颜色框标注了)

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/129467023


 更多项目《面部表情识别》系列文章请参考:

  1. 面部表情识别1:表情识别数据集(含下载链接)
  2. 面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)
  3. 面部表情识别3:Android实现表情识别(含源码,可实时检测)
  4. 面部表情识别4:C++实现表情识别(含源码,可实时检测)


 1.面部表情识别方法

面部表情识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+面部表情分类识别方法,即先采用通用的人脸检测模型,进行人脸检测,然后裁剪人脸区域,再训练一个面部表情分类器,完成对面部表情识别;

这样做的好处,是可以利用现有的人脸检测模型,而无需重新训练人脸检测模型,可减少人工标注成本低;而人脸数据相对而言比较容易采集,分类模型可针对性进行优化。


2.人脸检测方法

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

​​​

关于人脸检测的方法,可以参考我的另一篇博客:

行人检测和人脸检测和人脸关键点检测(C++/Android源码)


3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

本篇博文不含python版本的面部表情模型以及相关训练代码,关于面部表情识别模型的训练方法,请参考本人另一篇博文《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》:面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)

(2) 将Pytorch模型转换ONNX模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署。部署流程可分为四步:训练模型->将模型转换ONNX模型->将ONNX模型转换为TNN模型->C/C++部署TNN模型。

训练好Pytorch模型后,我们需要先将模型转换为ONNX模型,以便后续模型部署。

  • 原始项目提供转换脚本,你只需要修改model_file为你模型路径即可
  •  convert_torch_to_onnx.py实现将Pytorch模型转换ONNX模型的脚本
python libs/convert/convert_torch_to_onnx.py
"""
This code is used to convert the pytorch model into an onnx format model.
"""
import sys
import os

sys.path.insert(0, os.getcwd())
import torch.onnx
import onnx
from classifier.models.build_models import get_models
from basetrainer.utils import torch_tools


def build_net(model_file, net_type, input_size, num_classes, width_mult=1.0):
    """
    :param model_file: 模型文件
    :param net_type: 模型名称
    :param input_size: 模型输入大小
    :param num_classes: 类别数
    :param width_mult:
    :return:
    """
    model = get_models(net_type, input_size, num_classes, width_mult=width_mult, is_train=False, pretrained=False)
    state_dict = torch_tools.load_state_dict(model_file)
    model.load_state_dict(state_dict)
    return model


def convert2onnx(model_file, net_type, input_size, num_classes, width_mult=1.0, device="cpu", onnx_type="default"):
    model = build_net(model_file, net_type, input_size, num_classes, width_mult=width_mult)
    model = model.to(device)
    model.eval()
    model_name = os.path.basename(model_file)[:-len(".pth")] + ".onnx"
    onnx_path = os.path.join(os.path.dirname(model_file), model_name)
    # dummy_input = torch.randn(1, 3, 240, 320).to("cuda")
    dummy_input = torch.randn(1, 3, input_size[1], input_size[0]).to(device)
    # torch.onnx.export(model, dummy_input, onnx_path, verbose=False,
    #                   input_names=['input'],output_names=['scores', 'boxes'])
    do_constant_folding = True
    if onnx_type == "default":
        torch.onnx.export(model, dummy_input, onnx_path, verbose=False, export_params=True,
                          do_constant_folding=do_constant_folding,
                          input_names=['input'],
                          output_names=['output'])
    elif onnx_type == "det":
        torch.onnx.export(model,
                          dummy_input,
                          onnx_path,
                          do_constant_folding=do_constant_folding,
                          export_params=True,
                          verbose=False,
                          input_names=['input'],
                          output_names=['scores', 'boxes', 'ldmks'])
    elif onnx_type == "kp":
        torch.onnx.export(model,
                          dummy_input,
                          onnx_path,
                          do_constant_folding=do_constant_folding,
                          export_params=True,
                          verbose=False,
                          input_names=['input'],
                          output_names=['output'])
    onnx_model = onnx.load(onnx_path)
    onnx.checker.check_model(onnx_model)
    print(onnx_path)


if __name__ == "__main__":
    net_type = "mobilenet_v2"
    width_mult = 1.0
    input_size = [128, 128]
    num_classes = 2
    model_file = "work_space/mobilenet_v2_1.0_CrossEntropyLoss/model/best_model_022_98.1848.pth"
    convert2onnx(model_file, net_type, input_size, num_classes, width_mult=width_mult)

(3) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

​​​

4.面部表情识别模型C/C++部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib_AI吃大瓜的博客-CSDN博客_opencv opencv_contrib ubuntu

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL_xiaozl_284的博客-CSDN博客_clinfo源码下载

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目实现了C/C++版本的车牌检测和车牌识别,车牌检测模型YOLOv5和车牌识别模型PlateNet,模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通设备即可达到实时处理。

如果你想在这个 Demo部署你自己训练的车牌检测模型YOLOv5和车牌识别模型PlateNet,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)

add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")

if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
    # -DCMAKE_BUILD_TYPE=Debug
    # -DCMAKE_BUILD_TYPE=Release
    message(STATUS "No build type selected, default to Release")
    set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()

# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")

# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")


# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake buil ds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    #set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DTNN_ARM_ENABLE)              # for Android CPU
    add_definitions(-DDEBUG_ANDROID_ON)            # for Android Log
    add_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")


# Detector
include_directories(src)
set(SRC_LIST
        src/object_detection.cpp
        src/classification.cpp
        src/Interpreter.cpp)
add_library(dmcv SHARED ${SRC_LIST})
target_link_libraries(dmcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")

add_executable(Detector src/main.cpp)
#add_executable(Detector src/main_for_detect.cpp)
#add_executable(Detector src/main_for_yolov5.cpp)
target_link_libraries(Detector dmcv ${TNN} -lpthread)


(5)main源码

主程序中函数main实现提供了面部表情识别的使用方法,支持图片,视频和摄像头测试

  •     test_image_file();   // 测试图片文件
  •     test_video_file();   // 测试视频文件
  •     test_camera();       //测试摄像头
//
// Created by Pan on 2020/6/24.
//

#include "object_detection.h"
#include "classification.h"
#include <iostream>
#include <string>
#include <vector>
#include "file_utils.h"
#include "image_utils.h"

using namespace dl;
using namespace vision;
using namespace std;


const int num_thread = 1; // 开启CPU线程数目
DeviceType device = GPU;  // 选择运行设备CPU/GPU
// 人脸检测模型
const char *det_model_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnmodel";
const char *det_proto_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnproto";
ObjectDetectionParam model_param = FACE_MODEL;//模型参数
// 分类模型
const char *cls_model_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnmodel";
const char *cls_proto_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnproto";
ClassificationParam ClassParam = EMOTION_MODEL;//模型参数

// 设置检测阈值
const float scoreThresh = 0.5;
const float iouThresh = 0.3;
ObjectDetection *detector = new ObjectDetection(det_model_file,
                                                det_proto_file,
                                                model_param,
                                                num_thread,
                                                device);

Classification *classifier = new Classification(cls_model_file,
                                                cls_proto_file,
                                                ClassParam,
                                                num_thread,
                                                device);

/***
 * 测试图片文件
 */
void test_image_file() {
    //测试图片的目录
    string image_dir = "../data/test_image";
    std::vector<string> image_list = get_files_list(image_dir);
    for (string image_path:image_list) {
        cv::Mat bgr_image = cv::imread(image_path);
        bgr_image = image_resize(bgr_image, 960);
        if (bgr_image.empty()) continue;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(bgr_image, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(bgr_image, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(bgr_image, &resultInfo);
    }
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
}

/***
 * 测试视频文件
 * @return
 */
int test_video_file() {
    //测试视频文件
    string video_file = "../data/video/video-test.mp4";
    cv::VideoCapture cap;
    bool ret = get_video_capture(video_file, cap);
    cv::Mat frame;
    while (ret) {
        cap >> frame;
        if (frame.empty()) break;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(frame, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(frame, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(frame, &resultInfo, 20);
    }
    cap.release();
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
    return 0;

}


/***
 * 测试摄像头
 * @return
 */
int test_camera() {
    int camera = 0; //摄像头ID号(请修改成自己摄像头ID号)
    cv::VideoCapture cap;
    bool ret = get_video_capture(camera, cap);
    cv::Mat frame;
    while (ret) {
        cap >> frame;
        if (frame.empty()) break;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(frame, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(frame, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(frame, &resultInfo, 20);
    }
    cap.release();
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
    return 0;

}


int main() {
    test_image_file();   // 测试图片文件
    //test_video_file();   // 测试视频文件
    //test_camera();       //测试摄像头
    return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];then
  mkdir "build"
else
  echo "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./demo

  • 如果你要测试CPU运行的性能,请修改src/main.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main.cpp (需配置好OpenCL) 

DeviceType device = GPU;

PS:纯CPU C++推理模式比较耗时,需要几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。

(7)Demo测试效果 

 C++版本与Python版本的结果几乎是一致,下面是面部表情识别效果展示(其中不同表情用不同颜色表示了)


5.项目源码下载

C++实现表情识别项目源码下载地址:面部表情识别4:C++实现表情识别(含源码,可实时检测)

整套项目源码内容包含:

  1. 提供C/C++版本的人脸检测模型
  2. 提供C/C++版本的面部表情分类模型
  3. C++源码支持CPU和GPU,开启GPU(OpenCL)可以实时检测和识别(纯CPU推理速度很慢,模型加速需要配置好OpenCL,GPU推理约15ms左右)
  4. 项目配置好了base-utils和TNN,而OpenCV和OpenCL需要自行编译安装
  5. C/C++ Demo支持图片,视频,摄像头测试

 Android面部表情识别APP Demo体验:https://download.csdn.net/download/guyuealian/87575425

或者链接: https://pan.baidu.com/s/16OOi-qCENP4WbIeSzO5e9g 提取码: cs5g 

如果你需要面部表情识别的训练代码,请参考:《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)_AI吃大瓜的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/69423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Kuebernetes资源控制管理

第四阶段 时 间&#xff1a;2023年8月11日 参加人&#xff1a;全班人员 内 容&#xff1a; Kuebernetes资源控制管理 目录 Kubectl命令工具 一、kubectl 命令行的语法 二、kubectl命令列表 三、使用 Kubectl 工具容器资源 &#xff08;一&#xff09;创建Pod &…

新疆大学841软件工程考研

1&#xff0e;软件生产的发展经历了三个阶段&#xff0c;分别是____、程序系统时代和软件工程时代时代。 2&#xff0e;可行性研究从以下三个方面研究每种解决方法的可行性&#xff1a;经济可行性、社会可行性和_____。 3&#xff0e;HIPO图的H图用于描述软件的层次关系&…

git强推覆盖其他项目分支

git强推分支&#xff0c;覆盖其他分支&#xff1b; 操作&#xff1a; 下载branch-1.3代码&#xff1b; $ git clone gitlabgitlab.zte.net:zte-dba-service/branch.git $ git remote add origin2 gitlabgitlab.zte.net:zte-service/branch.git $ git push origin2 master -f注…

同一局域网共享一个打印机方法

文章目录 需求描述设备连接情况配置网络凭证 需求描述 pc2想直接打印&#xff0c;而不是每次存到u盘&#xff0c;再拿到pc1&#xff0c;打印&#xff0c;实现本机打印 设备连接情况 配置 &#xff08;1&#xff09;pc1设置 ①共享打印机操作 控制面板——>设备和打印机—…

使用gitee创建远程maven仓库

1. 创建一个项目作为远程仓库 2. 打包项目发布到远程仓库 id随意&#xff0c;url是打包到哪个文件夹里面 在需要打包的项目的pom中添加 <distributionManagement><repository><id>handsomehuang-maven</id><url>file:D:/workspace/java/2023/re…

全面讲解|DCMM数据管理能力成熟度及各地政策汇总

信息技术与经济社会的交汇融合引发了数据爆发式增长。数据蕴含着重要的价值&#xff0c;已成为国家基础性战略资源&#xff0c;正日益对全球生产、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力产生重要影响。数据价值发挥的前提是管理好数据&#xff0c;…

【Axure教程】账单列表和详情

账单列表和详情页在支付系统中不仅是用户了解财务状况和跟踪交易的关键工具&#xff0c;还有助于提高支付安全性、解决问题以及满足法律和财务要求。因此&#xff0c;设计一个清晰、易用且功能丰富的账单管理系统对于支付系统的成功运营和用户满意度至关重要。 今天作者就教大…

flutter开发实战-实现marquee根据文本长度显示文本跑马灯效果

flutter开发实战-实现marquee文本跑马灯效果 最近开发过程中需要marquee文本跑马灯效果&#xff0c;这里使用到了flutter的插件marquee 效果图如下 一、marquee 1.1 引入marquee 在pubspec.yaml中引入marquee # 跑马灯效果marquee: ^2.2.31.2 marquee使用 marquee使用也是…

Apipost接口测试断言

常用断言直接点右边栏 断言list&#xff1a; // 断言json数组长度 apt.assert(response.json.data.data.length20); // 断言json数组中的某个对象 apt.assert(response.json.data.data[0].docid1482);

在word的文本框内使用Endnote引用文献,如何保证引文编号按照上下文排序

问题 如下图所示&#xff0c;我在word中插入了一个文本框&#xff08;为了插图&#xff09;&#xff0c;然后文本框内有引用&#xff0c;结果endnote自动将文本框内的引用优先排序&#xff0c;变成文献[1]了&#xff0c;而事实上应该是[31]。请问如何能让文本框内的排序也自动…

10 年 2023 大目标检测模型总结

对象检测示例 “物体检测是计算机视觉中最令人兴奋和最具挑战性的问题之一&#xff0c;深度学习已成为解决这一问题的有力工具。 — 陈良杰博士 OBJECT检测是计算机视觉中的一项基本任务&#xff0c;涉及识别和定位图像中的对象。深度学习彻底改变了对象检测&#xff0c;可以更…

百度chatgpt内测版

搜索AI伙伴 申请到了百度的chatgpt&#xff1a; 完整的窗口布局&#xff1a; 三个哲学问题&#xff1a; 灵感中心&#xff1a; 请做一副画&#xff0c;一个渔夫&#xff0c;冬天&#xff0c;下着大雪&#xff0c;在船上为了一家的生计在钓鱼&#xff0c;远处的山上也都是白雪&a…

淘宝商品详情接口(商品列表,APP详情接口)返回示例说明,PC端和APP端

淘宝商品详情包括以下信息&#xff1a; 1. 商品标题&#xff1a;商品的名称或标题&#xff0c;用于描述商品的特点和功能。 2. 商品价格&#xff1a;商品的销售价格&#xff0c;包括原价和促销价等。 3. 商品图片&#xff1a;展示商品的照片或图像&#xff0c;以便顾客可以更…

重启服务器引发的Docker异常

公司使用云服务器需要硬盘扩容&#xff0c;服务器重启才生效。 重启以后发现拉取远程镜像的命令登录失败了&#xff01; 然后发现找不到容器和镜像列表了&#xff0c;但是容器都启动了。 查看docker运行状态都是正常的 systemctl is-active docker systemctl status docker.…

uni、css——制作表格样式的模型

案例展示 这里以5列做展示&#xff08;可随意调节&#xff09; 案例代码 <view class"list"><view class"item" v-for"(item,index) in list" :key"index">1</view> <!-- 有内容 --><view clas…

openlayers有哪些版本以及区别

vue3openlayer7 openlayer版本介绍 openlayer版本介绍 一、多个项目版本对比 官网首页罗列的几个版本&#xff1a; 包括&#xff1a;v7\v6\v5\v4\v3\v2 两年前使用v6.5.0 2023年7月版本是v7.4.0

最小生成树——prim算法

prim算法详解 prim算法简介prim算法步骤prim复杂度prim样例题目公路修建题目描述输入格式输出格式样例样例输入样例输出 提示 prim样例代码 prim算法简介 P r i m Prim Prim算法是一种用于解决最小生成树问题的贪心算法。最小生成树是一个连通图的生成树&#xff0c;它的所有边…

springboot vue 初步集成onlyoffice

文章目录 前言一、vue ts1. 安装依赖2. onlyoffice组件实现3. 使用组件4. 我的配置文件 二、springboot 回调代码1. 本地存储 三、效果展示踩坑总结问题1问题2 前言 对接onlyoffice&#xff0c;实现文档的预览和在线编辑功能。 一、vue ts 1. 安装依赖 npm install --sav…

【Maven】依赖范围、依赖传递、依赖排除、依赖原则、依赖继承

【Maven】依赖范围、依赖传递、依赖排除、依赖原则、依赖继承 依赖范围 依赖传递 依赖排除 依赖原则 依赖继承 依赖范围 在Maven中&#xff0c;依赖范围&#xff08;Dependency Scope&#xff09;用于控制依赖项在编译、测试和运行时的可见性和可用性。通过指定适当的依赖…

W5100S-EVB-PICO作为TCP Client 进行数据回环测试(五)

前言 上一章我们用W5100S-EVB-PICO开发板通过DNS解析www.baidu.com&#xff08;百度域名&#xff09;成功得到其IP地址&#xff0c;那么本章我们将用我们的开发板作为客户端去连接服务器&#xff0c;并做数据回环测试&#xff1a;收到服务器发送的数据&#xff0c;并回传给服务…