高光谱图像聚类的像素-超像素对比学习与伪标签校正

Pixel-Superpixel Contrastive Learning and Pseudo-Label Correction for Hyperspectral Image Clustering

文章目录

  • Pixel-Superpixel Contrastive Learning and Pseudo-Label Correction for Hyperspectral Image Clustering
    • 摘要
    • 引言
    • 相关方法
      • 对比学习
    • 方法
      • 超像素对比学习
      • 像素级对比学习
      • 伪标签校正

摘要

本文提出了一种新的高光谱图像(HSI)聚类方法,名为像素-超像素对比学习与伪标签校正(PSCPC)。该方法结合了像素级和超像素级的对比学习,通过超像素捕获领域特定的细粒度特征,并在超像素内部对少量像素进行比较学习。PSCPC通过一个伪标签校正模块来对齐像素级和超像素级的聚类伪标签,使用像素级聚类结果来指导超像素级聚类,从而提高模型的泛化能力。

引言

硬件成像技术的快速发展,特别是高光谱遥感技术,它使用纳米级成像光谱仪对地面物体进行多波段的同时成像。HSI包含了丰富的空间、辐射和光谱信息,使得图像分析和处理领域中的地面物体分类成为一个重要的研究方向。由于在实际应用中获取大量标记训练样本是困难的,因此无监督分类或聚类方法得到了广泛应用。传统聚类算法在高维数据聚类任务中存在局限性,深度学习结合传统聚类算法的深度聚类算法能够更好地利用HSI的光谱和空间信息。

  • 文章的主要贡献

提出了一种新颖的HSI聚类方法PSCPC,它同时关注硬正样本和硬负样本对。
设计了一个综合的相似性度量标准,考虑了属性和结构信息,以更好地揭示样本之间的关系。
在高置信度聚类信息的指导下,提出了一种样本权重调节策略,动态增加硬样本对的权重,同时减少容易样本的权重。
在六个数据集上的广泛实验结果证明了PSCPC方法的优越性和有效性。
在这里插入图片描述

相关方法

对比学习

物体具有某些一般特征,对比学习学习这样的特征,具有很强的可迁移性,在无标签数据的聚类中能够取得很好的效果。对比学习算法的核心思想是利用样本信息生成监督信号,通过不断缩短正样本之间的距离、推开负样本之间的距离来提取更好的模态特征。构建正负样本并提取特征后,需要设置损失函数来减小表示空间中正例对之间的距离。损失函数一般采用InfoNCE损失

方法

超像素对比学习

HSI研究的先验知识表明,高光谱数据包含丰富的局部空间结构信息和一定的同质性[17],在超像素级别执行任务有助于节省资源并更好地聚合空间信息。超像素是图像分割的结果;每个超像素是一组具有相似属性的像素。尺度参数估计(ESP)方法[24]用于遥感数据的图像分割。
超像素的特征是编码器提取的像素特征图的平均值。

像素级对比学习

HSI聚类的本质是将相似的像素划分为更接近的簇。因此,改进像素级表示学习可以提高聚类精度,因为它鼓励空间上接近的像素具有相似的表示。为了获得平滑的特征和精细的分类,我们提出了一种像素级对比学习方法。由于超像素中的大部分像素属于同一类,为了节省计算资源,我们在每个超像素中随机选择m个像素与超像素特征H进行比较。

伪标签校正

与像素级聚类相比,由于超像素级任务的输入规模较大,聚类的精细度较低。此外,超像素级对比损失将除最接近的k个样本之外的所有样本视为负样本,这可能会分离相似的样本并破坏聚类结构。为了提高聚类模型的鲁棒性,我们提出了伪标签校正模块。具体来说,每个超像素有两个标签。首先,直接使用k均值聚类算法来获得每个超像素的预测标签。其次,对于超像素中的M个像素,根据聚类结果计算该超像素的伪标签ˆy,即各类像素所占的比例。为了避免预测结果过于绝对,这里的预测标签和伪标签都是软标签。伪标签校正模块的目的是保证两种方法得到的结果一致。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/692390.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

攻防世界---misc---Excaliflag

1、题目描述,下载附件是一张图片 2、用winhex分析,没有发现奇怪的地方 3、在kali中使用binwalk -e 命令,虽然分离出来了一些东西,但是不是有用的 4、最后用stegsolve分析,切换图片,发现有字符串&#xff0c…

番外篇 | 利用华为2023最新Gold-YOLO中的Gatherand-Distribute对特征融合模块进行改进

前言:Hello大家好,我是小哥谈。论文提出一种改进的信息融合机制Gather-and-Distribute (GD) ,通过全局融合多层特征并将全局信息注入高层,以提高YOLO系列模型的信息融合能力和检测性能。通过引入MAE-style预训练方法,进一步提高模型的准确性。🌈 目录 🚀1.论文解…

MyBatisPlus总结二

MybatisPlus总结一在这: MybatisPlus总结1/2-CSDN博客 六、分页查询: 6.1.介绍: MybatisPlus内置了分页插件,所以我们只需要配置一个分页拦截器就可以了,由于不同的数据库的分页的方式不一样,例如mysql和…

运维实用小脚本,登录即自动显示系统信息

今天给大家安利一个超级实用的Linux小技巧,让你每次登录终端时都能感受到满满的科技感和效率爆棚! 你是否厌倦了每次手动检查系统状态,像内存使用、CPU负载这些繁琐操作?别担心,一个小调整,让这一切自动化…

HC-05蓝牙模块配置连接和使用

文章目录 1. 前期准备 2. 进入AT模式 3. 电脑串口配置 4. 配置过程 5. 主从机蓝牙连接 6. 蓝牙模块HC-05和电脑连接 1. 前期准备 首先需要准备一个USB转TTL连接器,电脑安装一个串口助手,然后按照下面的连接方式将其相连。 VCCVCCGNDGNDRXDTXDTXD…

LeetCode ---400周赛

题目列表 3168. 候诊室中的最少椅子数 3169. 无需开会的工作日 3170. 删除星号以后字典序最小的字符串 3171. 找到按位与最接近 K 的子数组 一、候诊室中的最少椅子数 简单的模拟题,我们可以这样来模拟:当有顾客来时,我们加一把椅子&…

如何使用GPT-4o函数调用构建一个实时应用程序?

本教程介绍了如何使用OpenAI最新的LLM GPT-4o通过函数调用将实时数据引入LLM。 我们在LLM函数调用指南(详见https://thenewstack.io/a-comprehensive-guide-to-function-calling-in-llms/)中讨论了如何将实时数据引入聊天机器人和代理。现在,我们将通过将来自Fligh…

React + SpringBoot实现图片预览和视频在线播放,其中视频实现切片保存和分段播放

图片预览和视频在线播放 需求描述 实现播放视频的需求时,往往是前端直接加载一个mp4文件,这样做法在遇到视频文件较大时,容易造成卡顿,不能及时加载出来。我们可以将视频进行切片,然后分段加载。播放一点加载一点&am…

【稳定检索/投稿优惠】2024年材料科学与能源工程国际会议(MSEE 2024)

2024 International Conference on Materials Science and Energy Engineering 2024年材料科学与能源工程国际会议 【会议信息】 会议简称:MSEE 2024大会地点:中国苏州会议官网:www.iacmsee.com会议邮箱:mseesub-paper.com审稿结…

【基于C++与OpenCV实现魔方图像识别和还原算法】施工总览图

文章目录 主要效果展示思维导图魔方还原算法 本系列博客长期更新,分为两大部分 OpenCV实现魔方六面识别 C编写科先巴二阶段还原算法实现三阶魔方的还原 主要效果展示 摄像头识别六面 3D图像构建,提供还原公式 动画演示还原过程 思维导图 魔方还原算法 参…

Java Web学习笔记26——Element常用组件

常见组件: 就是一个复制和粘贴的过程。 Table表格:用于展示多条结构类的数据,可对数据进行排序、筛选、对比或其他自定义操作。 常见组件-分页主键: Pagination:分页:当数据量比较多时,使用分…

sqlmap直接嗦 dnslog注入 sqllibs第8关

dnslog注入是解决注入的时候没有回显的情况,通过dns外带来进行得到我们想要的数据。 我们是用了dns解析的时候会留下记录,这时候就可以看见我们想要的内容。 这个时候我们还要了解unc路径以及一个函数load_file()以及concat来进行注入。看看我的笔记 unc…

atmel studio 无法通过printf打印浮点数到串口

择右侧的项目,右键,选择properties 系统把它优化了,所以删除,即可 然后,选择相应波特率,效验位,数据位是否正确,即可

Transformer 动画讲解:多层感知机

暑期实习基本结束了,校招即将开启。 不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。提前准备才是完全之策。 最近,我们又陆续整理了很多大厂的面试题&#xff0c…

Golang | Leetcode Golang题解之第138题随机链表的复制

题目: 题解: func copyRandomList(head *Node) *Node {if head nil {return nil}for node : head; node ! nil; node node.Next.Next {node.Next &Node{Val: node.Val, Next: node.Next}}for node : head; node ! nil; node node.Next.Next {if…

项目bug1

大项目测bug的时候让输入数字,如果不是则捕获异常,提示错误,几段很简单的代码: System.out.println("请输入要存入的金额"); Scanner sc new Scanner(System.in); while(true) {try {money sc.nextInt();break;} cat…

ctfshow-web入门-命令执行(web41_exp与分析)

过滤不严,命令执行 preg_match(/[0-9]|[a-z]|\^|\|\~|\$|\[|\]|\{|\}|\&|\-/i, $c) 过滤掉了数字、字母以及一些符号,之前接触过的无字母 rce 是取反编码再取反,采用不可见字符去绕过正则,但是这里取反符号被过滤掉了&#x…

mysql (事物)

一.什么是事物 事物是一组操作的集合,不可分割的工作单位,事物会把所有的操作当作一个整体一起向系统提交或撤销操作请求,就是这些操作要么一起成功要么一起失败。 二.事物操作 (这个就是一个理解) 1.事务特性 原子性…

java中的异常-异常处理(try、catch、finally、throw、throws)+自定义异常

一、概述 1、java程序员在编写程序时提前编写好对异常的处理程序,在程序发生异常时就可以执行预先设定好的处理程序,处理程序执行完之后,可以继续向后执行后面的程序 2、异常处理程序是在程序执行出现异常时才执行的 二、5个关键字 1、tr…

信息安全与密码技术概述

1. 信息安全的法律法规 2016年11月7日,中华人民共和国第十二届全国人民代表大会常务委员会第二十四次会议通过《中华人民共和国网络安全法》,自2017年6月1日起施行。 2019年10月26日,中华人民共和国第十三届全国人民代表大会常务委员会第十四…