D455相机RGB与深度图像对齐,缓解相机无效区域的问题

前言

上一次我们介绍了深度相机D455的使用:intel深度相机D455的使用-CSDN博客,我们也看到了相机检测到的无效区域。

在使用Intel深度相机D455时,我们经常会遇到深度图中的无效区域。这些无效区域可能由于黑色物体、光滑表面、透明物体以及视差效应等原因引起。为了解决这些问题,我们可以采用图像修复与滤波结合的方法。具体步骤包括创建掩模图、使用插值方法填补缺失值,以及利用OpenCV的inpaint函数进行修复。本文详细介绍了如何根据不同的对齐方式(深度对齐到彩色或彩色对齐到深度)来处理无效区域,并展示了图像修复的实际代码和效果。这些方法能有效提升深度图质量,特别适用于深度加雾任务。

请注意本文中图像修复与滤波结合的方法处理无效区域的部分,仅仅只适用于我的需求,即根据深度图进行深度加雾的任务。

深度相机的缺点

D455原理

双目立体视觉系统通过视差计算来获得深度信息。相机系统捕捉到的两幅红外图像会有一个视差,即相同物体在两幅图像中的位置差异。通过视差计算,可以推算出物体到相机的距离(深度)。

缺点

黑色物体的影响

黑色物体对光线的反射率非常低,意味着它们吸收大部分入射光线,而不是反射回去。对于依赖反射光线来计算深度的双目立体视觉系统,这会导致反射信号不足,从而影响深度计算的精度和可靠性。并且黑色物体通常与背景之间的对比度较低,这使得双目相机难以在图像中识别和匹配这些物体的特征点,从而影响视差计算。

光滑物体表面反射的影响

光滑表面会产生镜面反射,这意味着光线会按照入射角以相同的角度反射出去。这种反射模式不同于漫反射,深度相机会因为接收到的光线方向不一致而无法准确计算深度信息。

图源:深度相机的坑_结构光相机深度信息缺失-CSDN博客 

透明物体透射的影响

玻璃等透明物体对基于结构光的深度相机造成的问题尤其明显。因为这些相机依赖红外光的反射来测量深度,当光线穿过或在玻璃表面反射时,会导致深度信息不准确或完全丢失。这种情况会导致深度图像中出现大量的零值或无效值。

视差的影响

在物体边缘或细小结构上,视差效应会导致深度信息的不连续和噪声。由于深度相机的发射端和接收端之间存在间距,物体边缘会有视觉盲区。远处物体边缘受影响较小,但近距离物体边缘会显著受影响,产生无效深度值的阴影区域,导致深度图在这些区域中缺失和不准确。

RGB与深度图像对齐

深度对齐到彩色(ALIGN_WAY = 1): 这种方式通常用于彩色图像具有更高分辨率或更高精度的情况,将深度图像的像素对齐到彩色图像的像素上,便于在彩色图像中进行对象检测或其他处理。

彩色对齐到深度(ALIGN_WAY = 0): 这种方式通常用于深度图像的分辨率更高的情况,将彩色图像的像素对齐到深度图像的像素上,便于在深度图像中进行精确的距离测量。

import pyrealsense2 as rs
import os
import cv2
import numpy as np
from Depth_camera.utils import get_depth_camera_info, create_camera_save_path

saved_count = 0
extend_num = 3
width = 640
height = 480
fps = 30

# 0:彩色图像对齐到深度图;
# 1:深度图对齐到彩色图像
ALIGN_WAY = 1

color_path, depth_path = create_camera_save_path()
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, width, height, rs.format.z16, fps)
config.enable_stream(rs.stream.color, width, height, rs.format.bgr8, fps)

profile = pipeline.start(config)
get_depth_camera_info(profile)

# 设置对齐方式
align_to = rs.stream.color if ALIGN_WAY == 1 else rs.stream.depth
align = rs.align(align_to)
color_image2 = None
try:
    while True:
        frames = pipeline.wait_for_frames()

        # 对齐图像
        aligned_frames = align.process(frames)
        depth_frame = aligned_frames.get_depth_frame()
        color_frame = aligned_frames.get_color_frame()

        depth_image = np.asanyarray(depth_frame.get_data())
        
        if ALIGN_WAY == 0:
            color_frame2 = frames.get_color_frame()
            color_image2 = np.asanyarray(color_frame2.get_data())
            cv2.imshow("color_image2", color_image2)

        color_image = np.asanyarray(color_frame.get_data())

        # 获取深度信息,以米为单位
        depth_scale = profile.get_device().first_depth_sensor().get_depth_scale()
        depth_image_in_meters = depth_image * depth_scale

        depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
        images = np.hstack((color_image, depth_colormap))
        cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
        cv2.imshow('RealSense', images)
        cv2.imshow("depth_image_in_meters", depth_image_in_meters)
        key = cv2.waitKey(1)

        if key & 0xFF == ord('s'):
            saved_count += 1
            print(f"{saved_count} 已保存图像至 {color_path} 和 {depth_path}")
            if color_image2 is None:
                cv2.imwrite(os.path.join(color_path, "{}.png".format(saved_count)), color_image)
            else:
                cv2.imwrite(os.path.join(color_path, "{}.png".format(saved_count)), color_image2)
            # 深度信息保存为 .npy 格式,单位为米
            np.save(os.path.join(depth_path, "{}.npy".format(saved_count)), depth_image_in_meters)
        elif key & 0xFF == ord('q') or key == 27:
            cv2.destroyAllWindows()
            break

finally:
    pipeline.stop()

当ALIGN_WAY = 1 的效果:

当ALIGN_WAY = 0 的效果:

这样拍摄的图片能缓解无效区域。

图像修复与滤波结合处理无效区域

采用图像修复来处理深度图像中的缺失值(深度值为0的像素)。具体而言,按照以下步骤:

  1. 创建一个掩模图,将深度图像中值为0的像素标记为需要修补的区域。
  2. 将深度图像中的值为0的像素替换为NaN,这样做是为了在后续处理中标记需要填充的区域。
  3. 使用最近邻插值方法填充NaN值,将其替换为周围已知深度值的平均值。
  4. 使用OpenCV中的cv2.inpaint函数进行修补,根据掩模图进行修复。
import cv2
import numpy as np
import os

def inpaint_depth_image(depth_image, inpaintRadius=3):
    mask = (depth_image == 0).astype(np.uint8)
    depth_image_fixed = np.where(depth_image == 0, np.nan, depth_image)
    nan_mask = np.isnan(depth_image_fixed)
    depth_image_fixed[nan_mask] = np.interp(np.flatnonzero(nan_mask), np.flatnonzero(~nan_mask),
                                            depth_image_fixed[~nan_mask])
    inpainted_depth_image = cv2.inpaint(depth_image_fixed.astype(np.float32), mask, inpaintRadius=inpaintRadius,
                                        flags=cv2.INPAINT_TELEA)
    return inpainted_depth_image


def read_one_npy(path):
    depth_image = np.load(path)

    print(depth_image.shape)
    x = 1
    y = 1

    # 修补深度图像
    inpainted_depth_image = inpaint_depth_image(depth_image)
    print(np.unique(inpainted_depth_image))
    inpainted_depth_image = np.where(inpainted_depth_image <= 0, inpainted_depth_image + 1, inpainted_depth_image)
    print(np.unique(inpainted_depth_image))

    median_filtered_image = cv2.medianBlur(inpainted_depth_image, 3)
    truth_depth = median_filtered_image[x, y]
    print(truth_depth)

    cv2.imshow("depth", depth_image)
    cv2.imshow("inpainted_depth", median_filtered_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


def process_and_save_depth_images(input_folder, output_folder):
    os.makedirs(output_folder, exist_ok=True)
    for filename in os.listdir(input_folder):
        if filename.endswith(".npy"):
            file_path = os.path.join(input_folder, filename)
            depth_image = np.load(file_path)
            inpainted_depth_image = inpaint_depth_image(depth_image)
            inpainted_depth_image = np.where(inpainted_depth_image <= 0.5, inpainted_depth_image + 1,
                                             inpainted_depth_image)
            filtered_image = cv2.medianBlur(inpainted_depth_image, 5)
            #
            # filtered_image = cv2.GaussianBlur(inpainted_depth_image, (5, 5), 0)

            filtered_image = cv2.bilateralFilter(filtered_image, 5, 75, 75)
            output_file_path = os.path.join(output_folder, filename)
            np.save(output_file_path, filtered_image)

            print(f"Processed and saved: {output_file_path}")

if __name__ == "__main__":
    input_folder = r"D:\PythonProject\Githubproject\Depth_camera\2024_06_07_20_01_47\depth"
    output_folder = r"D:\PythonProject\Githubproject\Depth_camera\result\depth"
    im_path = r"D:\PythonProject\Githubproject\Depth_camera\2024_06_07_20_01_47\depth\1.npy"
    # process_and_save_depth_images(input_folder, output_folder)
    read_one_npy(im_path)

滤波处理能够有效的去除图像中的孤立噪点,平滑图像,这块使用何种滤波方式没有什么讲究,一般来说双边滤波能够边缘清晰的同时平滑图像,适用于保留图像细节的情况,但其实在仅使用中值滤波的效果也不错。可以根据个人任务需求组合。

可以增加修补函数的半径或者组合滤波,修改核的大小等进行改善

白色区域部分并不是没有信息,可以使用np.unique打印出来看看,此图经过处理后有15712个不同的值,相对来说比较合理

参考文章

Intel Realsense D435 深度图为什么会出现残影?(Invalid Depth Band 无效深度带)(黑洞)_realsense 深度图无效值-CSDN博客

Realsense相机在linux下的配置使用,RGB与depth图像对齐_librealsense-CSDN博客

深度相机的坑_结构光相机深度信息缺失-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/691609.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis中的主从复制

分布式系统中的几种Redis部署方式 为了解决一个程序只部署在一个服务器上的单点问题&#xff1a; 可用性问题&#xff0c;如果这个机器挂了&#xff0c;就意味着服务就中断了 一个程序只部署在一台机器上&#xff0c;它的性能/支持的并发量也是有限的 所以&#xff0c;就引…

若依原生框架集成mybatisplus

1、进入父级依赖 将这个阿里数据库连接池druid注释掉&#xff0c;然后将pagehelper排除jsqlparser分页&#xff0c;使用mybatisplus分页查询防止mybatisplus与pagehelper版本不匹配&#xff0c;不然会报错 2、进入disease-framework模块&#xff1a; config的下面DruidConf…

【python】OpenCV—Blob Detection(11)

学习来自OpenCV基础&#xff08;10&#xff09;使用OpenCV进行Blob检测 文章目录 1、cv2.SimpleBlobDetector_create 中文文档2、默认 parameters3、配置 parameters附录——cv2.drawKeypoints 1、cv2.SimpleBlobDetector_create 中文文档 cv2.SimpleBlobDetector_create 是 O…

平衡二叉树详解

目录 平衡二叉树的定义 平衡二叉树的基本操作 查找 插入 AVL树的建立 平衡二叉树的定义 平衡二叉树仍然是一棵二叉查找树&#xff0c;只是在其基础上增加了平衡的要求&#xff0c;也就是其左右子树的高度之差的绝对值不超过1。 在定义树的结构时需要加入一个变量height&…

外卖APP与外卖小程序开发:从源码到上线的全流程

本文&#xff0c;小编将详细介绍外卖系统与小程序开发的全过程&#xff0c;从源码的编写到系统的上线&#xff0c;为开发者提供全面的指导。 一、需求规划 用户需要一个简单易用的点餐界面&#xff0c;商家需要管理菜单、订单和配送&#xff0c;后台管理则需要监控系统运行状况…

韩顺平0基础学java——第19天

p396-406 final关键字 1.final修饰的为“常量”&#xff0c;需要给初始值。1可以直接定义时赋值&#xff0c;2在构造器中&#xff0c;3在代码块中。 注意静态代码块只能访问静态变量。 2.如果final修饰的关键字是静态的&#xff0c;那就不能在构造器中赋值&#xff0c;只能…

linux经典例题编程

编写Shell脚本&#xff0c;计算1~100的和 首先vi 1.sh,创建一个名为1.sh的脚本&#xff0c;然后赋予这个脚本权限&#xff0c;使用命令chmod 755 1.sh&#xff0c;然后就可以在脚本中写程序&#xff0c;然后运行。 shell脚本内容 运行结果&#xff1a; 编写Shell脚本&#xf…

人工智能在交通与物流领域的普及及应用

文章目录 &#x1f40b;引言 &#x1f40b;自动驾驶 &#x1f988;自动驾驶汽车 &#x1f421;应用现状 &#x1f421;技术实现 &#x1f421;实现过程及代码 &#x1f40b;智能交通管理 &#x1f988;应用现状 &#x1f988;技术实现 &#x1f988;实现过程及代码 &…

Polar Web【中等】反序列化

Polar Web【中等】反序列化 Contents Polar Web【中等】反序列化思路&探索EXPPHP生成PayloadGET传递参数 运行&总结 思路&探索 一个经典的反序列化问题&#xff0c;本文采用PHP代码辅助生成序列字符串的方式生成 Payload 来进行手动渗透。 打开站点&#xff0c;分析…

2024 vite 静态 scp2 自动化部署

1、导入库 npm install scp2 // 自动化部署 npm install chalk // 控制台输出的语句 npm install ora2、核心代码 创建文件夹放在主目录下的 deploy/index.js 复制粘贴以下代码&#xff1a; import client from scp2; import chalk from chalk; import ora from ora;const s…

聊一聊大数据需求的流程

大致的流程&#xff1a;需求对接、口径梳理、数据开发、任务发布、任务监控、任务保障 流程图 startuml skinparam packageStyle rectangleactor 需求方 participant 数据BP as 数据组 participant 离线数仓 participant 实时数仓需求方 -> 数据组: 提出需求 数据组 -> …

数据挖掘--认识数据

数据挖掘--引论 数据挖掘--认识数据 数据挖掘--数据预处理 数据挖掘--数据仓库与联机分析处理 数据挖掘--挖掘频繁模式、关联和相关性&#xff1a;基本概念和方法 数据挖掘--分类 数据挖掘--聚类分析&#xff1a;基本概念和方法 数据对象与属性类型 属性&#xff1a;是一…

STM32关于uc/OS-III的多任务程序

目录 一、UCOS-III源码获取 二、HAL库工程的建立 1.RCC配置 2.SYS配置 3.USART1配置 4.GPIO配置 5.时钟配置 6.项目配置 三、KEil文件添加 1.文件复制 2.KEil工程添加 3.添加文件路径 四、代码修改 1. 2.修改文件app_cfg.h中代码 3.修改include.h的代码 4.修改…

数据库 | 关系数据库设计

第七章 1.简述数据库的设计阶段&#xff1f;&#xff08;简要回答数据库设计步骤&#xff1f;&#xff09;&#xff08;&#xff08;数据库设计有哪几个阶段&#xff1f;&#xff09; 需求分析、概念结构设计、逻辑结构设计、物理结构设计、数据库的实施、数据库的运行和维护…

【国产NI替代】SMU 源测量仪:源测量单元平台主要用于半导体、传感器、模组等 IVR 测试测量

• 集 5 台仪器 (数字万用表、电压源、电流源、电子负载和脉冲发生器) 功能于⼀体 • 典型输出源及测量精度 02%&#xff0c;支持直流/脉冲输出模式 • 脉冲输出模式&#xff0c;最⼩脉冲宽度 100 us &#xff0c;上升时间 10 us • 具有 pA 级分辨率高精度源&#xff0c;且…

全自动饲料机械成套设备:养殖好帮手

全自动饲料机械成套设备是一套能够自动完成饲料生产全过程的机械设备。从原料的粉碎、混合、制粒&#xff0c;到成品的包装、储存&#xff0c;再到生产过程的监控与管理&#xff0c;全部实现自动化操作。减轻了人工劳动强度&#xff0c;提高了生产效率&#xff0c;同时也保证了…

【ARM Cache 及 MMU 系列文章 6 -- Cache 寄存器 CTR_EL0 | CLIDR | CCSIDR | CSSELR 使用详解 1】

请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】 及【嵌入式开发学习必备专栏】 文章目录 Cache 常用寄存器Cache CSSELR 寄存器Cache CSSELR 使用场景Cache CSSELR 操作示例 Cache CLIDR 寄存器LoUU 介绍LoUU 使用 LoUIS 介绍CLIDR 使用 Cache CCSIDR 寄存器Cache CTR_EL0 C…

http协议,tomcat的作用

HTTP 概念:Hyper Text Transfer Protocol&#xff0c;超文本传输协议&#xff0c;规定了浏览器和服务器之间数据传输的规则。 特点: 1.基于TCP协议:面向连接&#xff0c;安全 2. 基于请求-响应模型的:一次请求对应一次响应 3HTTP协议是无状态的协议:对于事务处理没有记忆能…

大模型应用:基于Golang + 大模型构建简易的电商售前对话服务

1.背景 某X互联网电商公司为了解决当前大量用户的售前咨询问题&#xff0c;需要建设一个不需要客服介入的简易电商售前机器人&#xff0c;用于回答用户的售前问题&#xff0c;并给出基本可靠的咨询回答。 当前大模型如gpt、baichuan、文心等均有开放使用的OpenAPI接口&#xf…

单片机+TN901非接触式红外测温设计

摘要 温度测量技术应用十分广泛&#xff0c;而且在现代设备故障检测领域中也是一项非常重要的技术。但在某些应用领域中&#xff0c;要求测量温度用的传感器不能与被测物体相接触&#xff0c;这就需要一种非接触的测温方式来满足上述测温需求。本论文正是应上述实际需求而设计的…