基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:《大模型面试宝典》(2024版) 发布!


本文将会介绍Text to SQL相关的概念,如何使用大模型SFT实现Text to SQL,最后介绍Text to SQL的应用场景。

引言

Text to SQL,又被称为Natural Language to SQL(简称NL2SQL),指的是将自然语言描述转化为数据库的SQL查询语句。由于数据库在我们日常工作生活中随处可见,因此Text to SQL技术也获得业界和学术界的不少研究与关注。

举个例子,比如在问题“What’s the population of New York city?”,那么我们在相关的某张表格(比如city表)中,对应的SQL语句应当为“SELECT POPULATION FROM city WHERE name = “New York””,此时数据库应当能执行该SQL语句。

常见的Text to SQL数据集有WIKISQL, Spider, ATIS, GeoQuery。以往已经有不少的NLP或者机器学习相关的技术涉及Text to SQL,但效果都比较一般。

接下来,我们将会介绍如何使用大模型SFT技术来实现Text to SQL,看看大模型的表现。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型算法岗技术与面试交流群, 想要交流、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:CSDN + 技术交流

SFT

我们使用HuggingFace上的b-mc2/sql-create-context数据集,该数据集只有78,577条训练数据,无测试集数据,字段为answer, question, context,其中answer为最终产生的SQL语句,question为用户问题,context为数据库表格创建语句。

比如其中在一个样本中,question为How many heads of the departments are older than 56 ?, context为CREATE TABLE head (age INTEGER), answer为SELECT COUNT(*) FROM head WHERE age > 56

我们使用谷歌开源的Gemma-7B模型对改数据集进行指令微调。以上述样本为例,对应的指令格式为:

\nBelow is an instruction that describes a task.Write a response that appropriately completes the request.\n### Instruction: How many heads of the departments are older than 56 ?\n### Database Schema:\nCREATE TABLE head (age INTEGER)\n### Response:\nSELECT COUNT(*) FROM head WHERE age > 56\n<eos>\n

其中为Gemma-7B模型的结束标志符。

使用trl可以很方面地对Gemma-7B模型进行SFT,代码如下:

from datasets import load_dataset
import torch
from peft import LoraConfig
from trl import SFTTrainer
from transformers import TrainingArguments
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

# Hugging Face model id
model_id = "./models/gemma-7b"

# BitsAndBytesConfig int-4 config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    quantization_config=bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right'

train_dataset = load_dataset("json", data_files="sql-create-context.json")['train']
print(train_dataset[0])
print(f"train size: {len(train_dataset)}")

# LoRA config based on QLoRA paper & Sebastian Raschka experiment
peft_config = LoraConfig(
        lora_alpha=16,
        lora_dropout=0.05,
        r=64,
        bias="none",
        target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj"],
        task_type="CAUSAL_LM", 
)

args = TrainingArguments(
    output_dir="output",                    # directory to save and repository id
    num_train_epochs=2,                     # number of training epochs
    per_device_train_batch_size=8,          # batch size per device during training
    gradient_accumulation_steps=4,          # number of steps before performing a backward/update pass
    gradient_checkpointing=True,            # use gradient checkpointing to save memory
    optim="paged_adamw_8bit",              
    save_strategy="epoch",
    logging_strategy="steps",
    logging_steps=10,                       # log every 10 steps
    bf16=True,                              # use bfloat16 precision
    learning_rate=1e-4,                     # learning rate, based on QLoRA paper
    max_grad_norm=0.3,                      # max gradient norm based on QLoRA paper
    warmup_ratio=0.1,                      # warmup ratio based on QLoRA paper
    lr_scheduler_type="constant",           # use constant learning rate scheduler
    push_to_hub=False,                       # push model to hub
    report_to="tensorboard",                # report metrics to tensorboard
)

max_seq_length = 1024

trainer = SFTTrainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    peft_config=peft_config,
    max_seq_length=max_seq_length,
    tokenizer=tokenizer,
    packing=False,
    dataset_text_field="text"
)


trainer.train()
trainer.save_model()

训练完后,我们使用下面的脚本进行新样本的预测,代码如下:

from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "./output/checkpoint-4911"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained("./models/gemma-7b")


while True:
    question = input("enter a question: ")
    context = input("enter database schema: ")
    input_text = f"""
Below is an instruction that describes a task.Write a response that appropriately completes the request.
### Instruction: {question}
### Database Schema:
{context}
### Response:
"""
    encoding = tokenizer(input_text, return_tensors="pt").to("cuda")
    outputs = model.generate(**encoding, max_new_tokens=100, temperature=0.1, do_sample=True)
    generated_ids = outputs[:, encoding.input_ids.shape[1]:]
    generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    print("Instruction: ", input_text)
    print("SQL: ", generated_texts[0].strip())

为了验证改模型的效果,我们在新样本进行测试。

  • 例子1

直接从SQL测验网站进行测试,第一个例子为:

图片

测试题例子1

模型生成的SQL语句为:SELECT * FROM CITY WHERE COUNTRYCODE = "USA" AND POPULATION > 100000,成功运行!

图片

生成的SQL语句执行成功1

  • 例子2

第二个例子为:

图片

生成的SQL语句为SELECT CITY, STATE FROM STATION,也能执行成功!

  • 例子3

上述的两个较为简单,我们再来看个复杂点的例子。第三个例子为:

图片

生成的SQL语句为SELECT CITY FROM STATION WHERE SUBSTR(CITY, -1) NOT IN ('A', 'E', 'I', 'O', 'U') GROUP BY CITY,竟然能执行成功!

  • 例子4

第四例子为两个表格,需要对表格进行join,如下:

图片

生成的SQL语句为SELECT T1.NAME FROM CITY AS T1 JOIN COUNTRY AS T2 ON T1.COUNTRYCODE = T2.CODE WHERE T2.CONTINENT = 'Africa',竟然能执行成功!

以上只是找了几个比较好的例子,实际上还是有很多生成的SQL语句无法通过测试的。

在实际的Text to SQL应用场景中,需要调整system prompt,对指令进行更加详细的描述,比较加入表格、字段描述。同时,还需要质量更高、更贴近业务场景的训练数据,以及合适的大模型等,需要保证生成的SQL语句的可执行准确率。

表格问答应用

我们举个例子,来说明Text to SQL和大模型结合起来使用,在表格问答场景中能有更好的表现。

Mysql中的users表的描述:

+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+

表格中的所有数据:

+----+---------------+------+-------+---------------------+
| id | name          | age  | place | insert_time         |
+----+---------------+------+-------+---------------------+
|  1 | Jack          |   25 | USA   | 2023-12-23 23:48:48 |
|  2 | Green         |   26 | UK    | 2023-12-23 23:48:58 |
|  3 | Alex          |   31 | GER   | 2023-12-23 23:49:03 |
|  4 | Chen          |   52 | CHN   | 2023-12-23 23:49:08 |
|  5 | Zhang         |   42 | CHN   | 2023-12-23 23:49:13 |
|  6 | ElasticSearch |   12 | USA   | 2023-12-24 00:41:20 |
|  7 | Kibana        |   24 | USA   | 2023-12-24 00:41:37 |
|  8 | Logstash      |   36 | USA   | 2023-12-24 00:42:41 |
+----+---------------+------+-------+---------------------+

我们考虑以下四个问题:

  • How old is Chen?

  • Who is the oldest person and its age and place?

  • How many persons come from USA and what are their names and age?

  • Return the top 5 oldest person in descending order with their name and age.

  • what are the names that begins with J or E?

使用LlamaIndex工具中的Text-to-SQL QueryEngine对上述四个问题进行问答。代码如下:

# -*- coding: utf-8 -*-
# @file: nl2sql_test.py
# llama-index == 0.9.30
# SQLAlchemy==2.0.20
# PyMySQL == 1.1.0
from sqlalchemy import create_engine, text

from llama_index import SQLDatabase, ServiceContext
from llama_index.llms import OpenAI
from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEngine

from llama_index.indices.struct_store.sql_query import (
    SQLTableRetrieverQueryEngine,
)
from llama_index.objects import (
    SQLTableNodeMapping,
    ObjectIndex,
    SQLTableSchema,
)
from llama_index import VectorStoreIndex
from llama_index.retrievers import NLSQLRetriever
from llama_index.query_engine import RetrieverQueryEngine

llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
service_context = ServiceContext.from_defaults(llm=llm)

engine = create_engine("mysql+pymysql://root:root@localhost:3306/orm_test")
sql_database = SQLDatabase(engine, include_tables=["users"])

# text-to-sql query engine, simple example
query_engine = NLSQLTableQueryEngine(
    sql_database=sql_database,
    tables=["users"]
)
query_str = "How old is Chen?"
response = query_engine.query(query_str)
print(response)
print('*' * 30, end='\n\n')

# total size of table schema overflows context window size
# then use SQLTableNodeMapping
# set Logging to DEBUG for more detailed outputs
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
    (SQLTableSchema(table_name="users"))
]  # add a SQLTableSchema for each table

obj_index = ObjectIndex.from_objects(
    table_schema_objs,
    table_node_mapping,
    VectorStoreIndex,
)
query_engine = SQLTableRetrieverQueryEngine(
    sql_database, obj_index.as_retriever(similarity_top_k=1)
)

response = query_engine.query("Who is the oldest person and its age and place?")
print(response)
print('*' * 30, end='\n\n')

response = query_engine.query("How many persons come from USA and what are their names and age?")
print(response.metadata)
print(response.metadata['result'])
print(response)
print('*' * 30, end='\n\n')

# manually set context text
city_stats_text = (
    "This table gives information regarding the persons and their age and place.\n"
    "The insert time means when the record was inserted into this table."
)

table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
    (SQLTableSchema(table_name="users", context_str=city_stats_text))
]

# text-to-sql retriever
# SQL Retriever
# default retrieval (return_raw=True)
nl_sql_retriever = NLSQLRetriever(
    sql_database, tables=["users"], return_raw=True
)

results = nl_sql_retriever.retrieve(
    "Return the top 5 oldest person in descending order with their name and age."
)

for n in results:
    print(n)
print('*' * 30, end='\n\n')

# default retrieval (return_raw=False)
nl_sql_retriever = NLSQLRetriever(
    sql_database, tables=["users"], return_raw=False
)
results = nl_sql_retriever.retrieve(
    "Return the top 5 oldest person in descending order with their name and age."
)

# NOTE: all the content is in the metadata
for n in results:
    print(n, n.metadata)
print('*' * 30, end='\n\n')

# compose SQL Retriever with RetrieverQueryEngine to synthesize a response
nl_sql_retriever = NLSQLRetriever(
    sql_database, tables=["users"], return_raw=True
)
query_engine = RetrieverQueryEngine.from_args(nl_sql_retriever)
queries = ["Return the top 5 oldest person in descending order with their name and age.",
           "what are the names that begins with J or E?"]
for query in queries:
    response = query_engine.query(query)
    print(response)
print('*' * 30, end='\n\n')

对应的输出答案为(中间有部分省略):

Chen is 52 years old.
******************************
The oldest person is Chen, who is 52 years old and is from China.
******************************
There are four persons from the USA in the database. Their names are Jack, ElasticSearch, Kibana, and Logstash, and their ages are 25, 12, 24, and 36 respectively.
******************************
The top 5 oldest people in descending order with their names and ages are:
1. Chen, 52
2. Zhang, 42
3. Logstash, 36
4. Alex, 31
5. Green, 26
******************************
The names that begin with J or E are ElasticSearch and Jack.

看来Text to SQL对于表格问答场景有很大帮助。

补充

对于上述表格问答应用中的5个问题,我们使用Gemma-7B微调的Text to SQL模型进行回答,生成的SQL语句如下:

  • SELECT age FROM users WHERE place = ‘Chen’

  • SELECT id, name, age, place FROM users ORDER BY age DESC LIMIT 1

  • SELECT id, name, age FROM users WHERE place = ‘USA’ ORDER BY insert_time

  • SELECT id, name, age FROM users ORDER BY age DESC LIMIT 5

  • SELECT name FROM users WHERE name LIKE ‘J%’ OR name LIKE ‘E%’

将它们在MySQL中进行执行,结果如下:

图片

MySQL执行结果

所有的语句都可以执行,但第一条语句是错误的,不过只需将place改成name即可执行成功。

有了上述的SQL执行结果,我们将上述表格问答中的第三个例子进行Prompt Engineer,如下:

<The background information follows>:

table `users` in Mysql:

+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+

SQL execution result:

mysql> SELECT id, name, age FROM users WHERE place = 'USA' ORDER BY insert_time;

+----+---------------+------+
| id | name          | age  |
+----+---------------+------+
|  1 | Jack          |   25 |
|  6 | ElasticSearch |   12 |
|  7 | Kibana        |   24 |
|  8 | Logstash      |   36 |
+----+---------------+------+

Based on the background information, Answer the question: How many persons come from USA and what are their names and age?

看看GPT3.5模型的回答:

图片

回答正确!

以上仅仅是对LlamaIndex中使用Text to SQL技术的一种可能的实现方式的思考,故在此作为补充。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/691167.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

时光正好保剑锋的抱治百病与成年人的世界

《时光正好》&#xff1a;保剑锋的“抱治百病”与成年人的世界在繁忙的都市里&#xff0c;每个角落上演着各自的人生戏码。而在这些戏码中&#xff0c;由保剑锋主演的《时光正好》无疑成为了近期引人注目的焦点。这部电视剧以其真实而深刻的剧情&#xff0c;让我们看到了成年人…

用于认知负荷评估的集成时空深度聚类(ISTDC)

Integrated Spatio-Temporal Deep Clustering (ISTDC) for cognitive workload assessment 摘要&#xff1a; 本文提出了一种新型的集成时空深度聚类&#xff08;ISTDC&#xff09;模型&#xff0c;用于评估认知负荷。该模型首先利用深度表示学习&#xff08;DRL&#xff09;…

Debug-014-nginx代理路径的一条规则

直接上图&#xff1a; 今天看禹神的前端视频&#xff0c;讲到在nginx中代理路径的时候&#xff0c;有一个规则&#xff1a; 如果/dev和下面的proxy_pass路径最后都带‘/’,那么就是匹配到dev之后要删除dev,然后再带着后面的路径&#xff1b;如果/dev和下面的proxy_pass路径最后…

【上篇】从 YOLOv1 到 YOLOv8 的 YOLO 物体检测模型历史

YOLO 型号之所以闻名遐迩,主要有两个原因:其速度和准确性令人印象深刻,而且能够快速、可靠地检测图像中的物体。 在本文中,我将与大家分享我在阅读一篇长达 30 页的综合性论文时获得的见解,该论文深入探讨了 YOLO 模型的进步。 这篇评论全面概述了 YOLO 框架的演变过程,…

自然语言处理:第三十二章HippoRAG:性能提高20% - 受海马体启发的RAG

文章链接: HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models 项目地址: OSU-NLP-Group/HippoRAG: HippoRAG is a novel RAG framework inspired by human long-term memory that enables LLMs to continuously integrate knowledge across e…

How to: Add and Customize Toolbar Skin Selectors

You can add skin selectors to a toolbar (BarManager) and Ribbon Control to allow users to choose skins at runtime. 将皮肤选择器添加到工具栏 At design time, click the [Add] button in the toolbar, and select a skin selector from the Skin Item sub-menu. 以下…

【C++课程学习】:C++入门(引用)

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;C课程学习 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 目录 &#x1f369;1.引用的概念&#xff1a; &#x1f369;2.引用和指针是两个概念&#xff1a; &#x…

Python采集东方财富网股票数据建立LSTM模型预测

Python采集东方财富网股票数据建立LSTM模型预测 一、数据爬取流程二、爬虫完整代码三、LSTM模型建模预测3.1 项目背景3.2 建模预测流程3.3 数据预处理3.4 数据可视化3.5 特征工程3.6 数据缩放3.7 数据转换3.8 模型创建3.9 评价模型3.10 可视化结果3.11 总结一、数据爬取流程 先…

LeetCode-165. 比较版本号【双指针 字符串】

LeetCode-165. 比较版本号【双指针 字符串】 题目描述&#xff1a;解题思路一&#xff1a;字符串分割解题思路二&#xff1a;双指针背诵版&#xff1a; 题目描述&#xff1a; 给你两个 版本号字符串 version1 和 version2 &#xff0c;请你比较它们。版本号由被点 ‘.’ 分开的…

ubuntu20.04设置文件开机自启动

硬件&#xff1a;树霉派4B 系统&#xff1a;ubuntu20.04 在ubuntu20.04上经常需要运行 ./BluetoothServerParse_L.c ,比较繁琐&#xff0c;想要设置开机自启动&#xff0c;让树霉派4B在接上电源之后就自动运行该程序。使用systemd服务&#xff0c;设置步骤如下&#xff1a; &…

Android Qt开发环境部署

我总结了在Qt中搭建Android开发两个要点&#xff1a; 1.JDK一定要是JDK1.8的 2.要下载目标Android版本的SDK&#xff0c;可以在Android studio SDK查看对应Android SDK版本 下面我们开发搭建。首先需要JDK&#xff0c;链接如下&#xff1a;链接&#xff1a;https://pan.baidu.…

鸿蒙? 车载?Flutter? React Native? 为什么我劝你三思,说点不一样的

本文首发于公众号“AntDream”&#xff0c;欢迎微信搜索“AntDream”或扫描文章底部二维码关注&#xff0c;和我一起每天进步一点点 引言 当今信息技术领域日新月异&#xff0c;各种新技术和新平台层出不穷。鸿蒙&#xff08;HarmonyOS&#xff09;、Flutter、以及车载应用开发…

以sqlilabs靶场为例,讲解SQL注入攻击原理【54-65关】

【Less-54】 与前面的题目不同是&#xff0c;这里只能提交10次&#xff0c;一旦提交超过十次&#xff0c;数据会重新刷新&#xff0c;所有的步骤需要重来一次。 解题步骤&#xff1a; 根据测试&#xff0c;使用的是单引号闭合。 # 判断字段的数量 ?id1 order by 3 -- aaa# …

老黄一举揭秘三代GPU!打破摩尔定律,打造AI帝国,量产Blackwell解决ChatGPT全球耗电难题

近日&#xff0c;老黄手持Blackwell向全世界展示的那一刻&#xff0c;全场观众沸腾了。 这是迄今为止世界上最大的芯片&#xff01; 用老黄的话来说&#xff0c;它是「全世界迄今为止制造出来的最复杂、性能最高的计算机。」GPT-4o深夜发布&#xff01;Plus免费可用&#xff01…

五分钟上手IoT小程序

五分钟上手IoT小程序 IoT小程序框架搭建开发环境首先安装NodeJs安装NodeJs验证安装成功 安装cnpm 安装VSCode 开发IDE下载开发IDE安装开发IDE安装框架脚手架 下载模拟器创建工程项目应用编译(打包构建) VSCode 开发IDE安装插件通过开发插件创建工程编译工程debug编译编译太慢问…

《编译原理》期末考试复习手写笔记(二)+真题(第四、五、六章)+课后习题答案

第四章考试题型【自顶向下语法分析】 考点梳理&#xff1a; 1.语法分析程序的设计 2.确定的自顶向下分析思想2.1 FIRST集合 2.2 FOLLOW集合 2. 3 SELECT集合 2. 4 LL(1)文法 3.LL(1)文法的判别 如何消除左公因子? 如何消除左递归? 4.非LL(1)到LL(1)文法的等价变换 5.LL(1)分…

Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;一&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;三&#xff09; 基于 LlaMA…

【算法训练记录——Day27】

Day27——回溯算法Ⅲ 1.组合总和2.组合总和II3.分割回文串 内容 ● 39.组合总和 ● 40.组合总和II ● 131.分割回文串 1.组合总和 思路&#xff1a;和组合总和一样&#xff0c;先从candidates中遍历选择元素&#xff0c;但是纵向递归时所选择元素要包括当前元素 vector<int&…

Windows下 CLion中,配置 OpenCV、LibTorch

首先按照win下C部署深度学习模型之clion配置pytorchopencv教程记录 步骤配置。 LibTorch 部分 在测试LibTorch时会出现类似 c10.dll not found 的问题&#xff08;Debug才有&#xff09;&#xff1a; 参考C部署Pytorch&#xff08;Libtorch&#xff09;出现问题、错误汇总和 …

unity3d:GameFramework+xLua+Protobuf+lua-protobuf,生成.cs,.pb工具流

概述 1.区分lua&#xff0c;cs用的proto 2.proto生成cs&#xff0c;使用protogen.exe&#xff0c;通过csharp.xslt修改生成cs样式 3.proto生成lua加载.pb二进制文件&#xff0c;并生成.pb列表文件&#xff0c;用于初始化加载 4.协议id生成cs&#xff0c;lua中枚举 区分cs&…