Paper速读-[Visual Prompt Multi-Modal Tracking]-Dlut.edu-CVPR2023

文章目录

  • 简介
  • 关于具体的思路
  • 问题描述
    • 算法细节
  • 实验结果
    • 模型的潜力
    • 模型结果

论文链接:Visual Prompt Multi-Modal Tracking

开源代码:Official implementation of ViPT

简介

 这篇文章说了个什么事情呢,来咱们先看简单的介绍图
在这里插入图片描述
简单来说,这篇文章主要干了这么一个事情:
以前的多模态呢,都是直接提取特征然后拼接到一起。这个文章不一样,我把所有的模态分开主次,其中只有一个主要模态,剩下的都是附加的。这些附加的模态可就不要再提取特征了,而是通过他们来提取prompt出来。并且使用这些prompt来帮助我的模型更好的在主要模态上提取特征。除此之外,还有一个不一样的点就是在主要模态上提取特征的时候,backbone,这里叫fundation model的模型参数是不更新的。
OK,你已经看完这篇文章了。。当然啦,如果还想知道知道更多的技术细节,咱们接着往下看。

关于具体的思路

 咱们来看第二张图,模型的详细介绍
在这里插入图片描述
这个图其实画的很好,过程非常直观。接下来咱们只需要展开说说其中的细节就可以了

问题描述

 首先,我们想要得到的是追踪器,单模态的方法中,假如说叫做 F R G B : { X R G B , B 0 } → B F_{RGB} : \{X_{RGB}, B_0\} \rightarrow B FRGB:{XRGB,B0}B,那么 B B B就是目标的box, B 0 B_0 B0就是这个框的初始值, X R G B X_{RGB} XRGB就是需要搜索的帧。那么接下来,在多模态的方法中,加入了一个啥呢 F R G B : { X R G B , X A , B 0 } → B F_{RGB} : \{X_{RGB}, X_{A},B_0\} \rightarrow B FRGB:{XRGB,XA,B0}B,变成这个样子了。其中这个 A A A代表的就是其他的模态,比如说深度图,热力图之类的东西。
 接下来,我们把问题拆成两个部分,首先是 f 1 : X R G B , X A , B 0 } → H R G B f_1 : {X_{RGB}, X_{A},B_0\}} \rightarrow H_{RGB} f1:XRGB,XA,B0}HRGB 。这个部分表示的是特征提取和交互的部分,之后我们紧跟 f 2 : H R G B → B f_2 : H_{RGB} \rightarrow B f2:HRGBB ,这个部分也就是最后的预测头。

算法细节

 在这里会将一些细节,但是也不会那么细。简单来说是这样的

  • 使用类似ViT之类的模型从最初的 X R G B X_{RGB} XRGB得到 H R G B 0 H^0_{RGB} HRGB0,接下来就可以进行后续的迭代编码:在这里插入图片描述
  • 然后的公式其实就很直观了哈,咱们紧接上一步,接着往下看。首先我们可以知道,通过RGB和补充模态A,我们可以得到两个初始化的值 H R G B 0 H^0_{RGB} HRGB0 H A 0 H^0_{A} HA0。接下来, H R G B 0 H^0_{RGB} HRGB0通入我们的解码器,或者叫Foundation model,而 H R G B 0 H^0_{RGB} HRGB0 H A 0 H^0_{A} HA0被送到一个叫做MCP (modality-complementaryprompter) 的模块里面,这个模块咱们之后细讲。接下来,从MCP学到的prompt就被按照这样的方式使用起来了:
    在这里插入图片描述
    这个其中的P其实就是我们的prompt,H就是我们需要送入下一层解码器的输入。那么这个具体怎么得到呢?咱们再往下看
  • 简单来说,MCP就是这个样子:在这里插入图片描述
    展开来说呢, H 0 = H R G B 0 H^0 = H^0_{RGB} H0=HRGB0 P 0 = H A 0 P^0 = H^0_{A} P0=HA0。然后 P l P^l Pl表示第l个MCP模块,这个MCP模块具体长成这样:
    在这里插入图片描述
  • OK,细节基本就是这样,再具体的可以去看一下原来的论文。

实验结果

模型的潜力

  • better adaptability than full fine-tuning
  • a closer association between RGB and RGB+auxiliary modality tracking, as well as learning about the modal complementarities
  • 其实说白了就是更好的适应性和更好的学习能力

模型结果

在这里插入图片描述
在这里插入图片描述

OK,那么以上就是本篇文章的全部内容了,感兴趣的小伙伴可以点击开头的链接阅读原文哦

关于更多的文章,请看这里哦文章分享专栏 Paper sharing Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/689513.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PVE管理虚拟机节点

今天使用PVE命令安装虚拟机。 ‍ 查看所有虚拟机 qm list 查看所有虚拟机 ​​ 创建虚拟机 qm create 创建虚拟机 qm create 106 --name vm-test --memory 2048 --net0 virtio,bridgevmbr0基础配置 这条命令会创建一个 VM,ID 为 106​,名称为 myvm​…

MySQL将错乱的水果信息,截取展示为 品名 英文名 价格 三列展示

将错乱的水果信息,截取展示为 品名 英文名 价格 三列展示 idname1苹果Apple72Plum6李子3Pineapple8菠萝4Mango5芒果5龙吐珠5Buddha’sHand6Olive9橄榄7Raspberry4树莓8Apricot5杏子9Grapefruit9柚子10火龙果Dragonfruit911倒挂金钟Hanging6LobsterClaw12巨峰葡萄Co…

【STM32HAL库学习】定时器功能、时钟以及各种模式理解

一、文章目的 记录自己从学习了定时器理论->代码实现使用定时->查询数据手册,加深了对定时器的理解以及该过程遇到了的一些不清楚的知识。 上图为参考手册里通用定时器框图,关于定时器各种情况的工作都在上面了,在理论学习和实际应用后…

Unity 编辑器扩展 一键替换指定物体下的所有材质球

先看效果 实现方案 1:创建几个用于测试的Cube 2:创建一个脚本 3:编写脚本内容 主要是这部分的逻辑 附上完整代码 using System.Collections; using System.Collections.Generic; using UnityEditor; using UnityEngine;public class Tool {[MenuItem(…

20240607每日通信--------VUE3前端引入scoket-io,后端引入Netty-SocketIO,我成功了,希望一起交流沟通

无语 前置: VUE3 前端集成scoket-io socket.io-client Sringboot 3.0JDK17集成Netty-SocketIO Netty-SocketIO 失败原因一: 前期决定要写demo时候,单独了解了,后端引入Netty-SocketIO注意事项,详见我先头写的博客 前…

【因果推断python】24_倾向得分2

目录 倾向加权 倾向得分估计 倾向加权 好的,我们得到了倾向得分。怎么办?就像我说过的,我们需要做的就是以此为条件。例如,我们可以运行一个线性回归,它仅以倾向得分为条件,而不是所有的 X。现在&#xff…

什么是虚拟局域网?快解析有哪些的虚拟化应用功能?

什么是虚拟局域网?从字面上理解就是不是真实存在的局域网。虚拟局域网是将网络用户和设备集中在一起,从而可以对不同地域和商业的需要有一定的支持性。虚拟局域网有它的优点,在使用过程中可以为企业提供更安全、更稳定、更灵活的服务保障体系…

详细分析Mysql中的JSON_OBJECT() 基本知识(附Demo)

目录 前言1. 基本知识2. Demo 前言 对于基本的命令行以及优化推荐阅读: 数据库中增删改常用语法语句(全)Mysql优化高级篇(全)命令行登录Mysql的详细讲解 1. 基本知识 JSON_OBJECT() 是 MySQL 中用于生成 JSON 对象…

React实现在线预览word报告/本地选择报告预览

标题使用的核心技术点是docx-preview,读取到文件的File对象,用File去做文件展示,这里是才用将文件转base64字符串存储到localStorage中 在线预览word报告且包含word样式 下载需要使用的min.js文件进项目的public目录中(上zip已包…

html--party网页制作

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>fo安方party</title><style>body {f…

【PythonCode】力扣Leetcode21~25题Python版

【PythonCode】力扣Leetcode21~25题Python版 前言 力扣Leetcode是一个集学习、刷题、竞赛等功能于一体的编程学习平台&#xff0c;很多计算机相关专业的学生、编程自学者、IT从业者在上面学习和刷题。 在Leetcode上刷题&#xff0c;可以选择各种主流的编程语言&#xff0c;如C…

【CS.CN】优化HTTP传输:揭示Transfer-Encoding: chunked的奥秘与应用

文章目录 0 序言0.1 由来0.2 使用场景 1 Transfer-Encoding: chunked的机制2 语法 && 通过设置Transfer-Encoding: chunked优化性能3 总结References 0 序言 0.1 由来 Transfer-Encoding头部字段在HTTP/1.1中被引入&#xff0c;用于指示数据传输过程中使用的编码方式…

OlSoul系统调校程序v2024.06.05

软件介绍 OlSoul是一款能够适配用于Win各个系统的系统调校软件&#xff0c;OlSoul内置有众多调校功能可以直接使用&#xff0c;如有启用无线网络功能、启用打印机功能、系统快速休眠与休眠开关、快捷方式小箭头去除功能等&#xff0c;具体的调校功能多达几十项&#xff0c;可自…

vsCode双击文件才能打开文件,单击文件只能预览?

解决&#xff1a; 1、打开设置 2、搜索workbench.editor.enablePreview 3、更改为不勾选状态 4、关闭设置 效果&#xff1a; 现在单击一个文件时&#xff0c;将会在编辑器中直接打开&#xff0c;而非是预览状态。

51单片机-实机演示(LED点阵)

目录 前言: 一.线位置 二.扩展 三.总结 前言: 这是一篇关于51单片机实机LED点阵的插线图和代码说明.另外还有一篇我写的仿真的连接在这:http://t.csdnimg.cn/ZNLCl,欢迎大家的点赞,评论,关注. 一.线位置 接线实机图. 引脚位置注意: 1. *-* P00->RE8 P01->RE7 …

多源最短路径算法–Floyd算法

多源最短路径算法–Floyd算法 Floyd算法是为了求出每一对顶点之间的最短路径 它使用了动态规划的思想&#xff0c;将问题的求解分为了多个阶段 先来个例子&#xff0c;这是个有向图 Floyd算法的运行需要两个矩阵 最短路径矩阵 从当前这个状态看各顶点间的最短路径长度 例…

网络编程: 高级IO与多路转接select,poll,epoll的使用与介绍

网络编程: 高级IO与多路转接select,poll,epoll的使用与介绍 前言一.五种IO模型1.IO的本质2.五种IO模型1.五种IO模型2.同步IO与异步IO3.IO效率 二.非阻塞IO1.系统调用介绍2.验证代码 三.select多路转接1.系统调用接口2.写代码 : 基于select的TCP服务器1.封装的Socket接口2.开始写…

攻防世界---misc---Hear-with-your-Eyes

1、题目描述&#xff0c;下载附件&#xff0c;是一个.gz后缀的文件&#xff0c;查找资料发现&#xff0c;这个后缀是Linux系统的压缩包后缀。这里题目提示了用眼睛听音频&#xff0c;说明会有个音频&#xff0c;并且信息就在音频&#xff0c;可以用眼睛看到 2、将文件放在linux…

读书笔记-《软件定义安全》之二:SDN/NFV环境中的安全问题

第2章 SDN/NFV环境中的安全问题 1.架构安全 SDN强调了控制平面的集中化&#xff0c;从架构上颠覆了原有的网络管理&#xff0c;所以SDN的架构安全就是首先要解决的问题。例如&#xff0c;SDN实现中网络控制器相关的安全问题。 1.1 SDN架构的安全综述 从网络安全的角度&…

C++面向对象程序设计 - 文件操作与文件流

在实际应用中&#xff0c;常以磁盘文件作为对象&#xff0c;即能从磁盘文件读取数据&#xff0c;也能将数据输出到磁盘文件&#xff0c;磁盘是计算机的外部存储器&#xff0c;能够长期保留信息&#xff0c;能读能写&#xff0c;可以刷新重写等等。 在C中&#xff0c;文件操作通…