DeepDriving | 多目标跟踪算法之SORT

本文来源公众号“DeepDriving”,仅用于学术分享,侵权删,干货满满。

原文链接:多目标跟踪算法之SORT

1 简介

SORT2016年发表的一篇文章Simple Online and Realtime Tracking中提出的一个经典的多目标跟踪算法,该算法结合常用的卡尔曼滤波器和匈牙利匹配算法实现了一个简单的在线多目标跟踪框架。由于其超简单的设计,SORT可以以260 Hz的更新速率实现多目标跟踪,远超当时其它的目标跟踪算法。

论文地址:https://arxiv.org/abs/1602.00763

代码地址:https://github.com/abewley/sort

2 具体实现

2.1 目标检测

SORT是一种采用Tracking-by-Detection策略的目标跟踪算法,也就是说算法的输入数据来源于目标检测器,其本身是不参与目标检测过程的。作者在论文里对比了以Faster-RCNNACFPASCAL VOC数据集上的行人检测结果作为MDPSORT跟踪算法的输入,得出的结论是目标检测结果的好坏直接决定了目标跟踪的性能,使用最好的目标检测器会得到最好的跟踪效果

这也告诉我们一个道理:解决问题要从源头开始。如果不从源头提升目标检测算法的性能,花再多时间去提升目标跟踪的性能可能都是徒劳。

2.2 状态估计模型

如果对卡尔曼滤波器不了解,可以看一下我之前整理的资料,里面有卡尔曼滤波器的详细推导过程:(后续文章介绍)。

2.3 数据关联

给已存在的目标分配当前帧检测到的边界框时,目标在当前帧中的边界框是基于之前的状态预测出来的。所有当前帧检测的边界框与已存在目标做预测得到的边界框通过计算它们之间的IOU来求代价矩阵,然后用匈牙利算法求解最优匹配结果。如果检测边界框与预测边界框匹配成功且它们之间的IOU值大于阈值IOU_min,那么就认为它们是一对有效的匹配对,否则是无效的。匹配成功后,就可以基于检测的边界框对目标状态进行更新了。

作者发现采用IOU作为距离度量进行匹配可以隐式地解决由于传递目标引起的短期遮挡的问题。具体来说,当一个目标被另一个物体覆盖时,检测器只能检测到这个遮挡物体而检测不到被遮挡物体,因为IOU距离有利于具有相似比例的检测框。这样的话遮挡物体可以正常被分配检测框去更新状态,而被遮挡物体则不会受误分配带来的影响,因为当前没有检测框会分配给它。

2.4 跟踪标识的创建和删除

当一个目标出现在图像中的时候,我们需要为其创建一个全局唯一的身份标识(ID);反之,当目标消失的时候就要销毁它的跟踪信息。

3 代码分析

3.1 算法整体流程

SORT算法的处理流程非常简单,感兴趣的可以去看源码。下图是我整理的算法流程图:

对当前帧的检测结果Detections和已存在的目标Tracker使用匈牙利算法进行匹配会出现三种情况:

  1. 检测结果Detection未匹配成功,那么就以该边界框的几何信息为初始状态去创建一个Tracker;

  2. 检测结果DetectionTracker匹配成功,那么就以该检测结果为观测值更新Tracker的状态;

  3. 未匹配的Tracker,前面说到T_Lost设置为1,也就是只要一帧没匹配上该Tracker就会被删除。

3.2 卡尔曼滤波器

SORT的代码里创建了一个类KalmanBoxTracker用于对卡尔曼滤波器的状态进行管理,卡尔曼滤波器使用的是filterpy.kalman包中的KalmanFilter,官方文档地址为:https://filterpy.readthedocs.io/en/latest/kalman/KalmanFilter.html。

3.2.1. 滤波器初始化

 def __init__(self,bbox):
    # 创建卡尔曼滤波器时需设置状态向量和观测向量的维度
    self.kf = KalmanFilter(dim_x=7, dim_z=4) 
    # 状态转移矩阵
    self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0],
                          [0, 1, 0, 0, 0, 1, 0],
                          [0, 0, 1, 0, 0, 0, 1],
                          [0, 0, 0, 1, 0, 0, 0],
                          [0, 0, 0, 0, 1, 0, 0],
                          [0, 0, 0, 0, 0, 1, 0],
                          [0, 0, 0, 0, 0, 0, 1]])
    # 观测矩阵
    self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0],
                          [0, 1, 0, 0, 0, 0, 0],
                          [0, 0, 1, 0, 0, 0, 0],
                          [0, 0, 0, 1, 0, 0, 0]])
    # 测量噪声协方差矩阵
    self.kf.R[2:,2:] *= 10.
    # 状态协方差矩阵,变化率不可观测所以设置一个较大值表示其较大的不确定性
    self.kf.P[4:,4:] *= 1000. 
    self.kf.P *= 10.
    # 过程噪声协方差矩阵
    self.kf.Q[-1,-1] *= 0.01
    self.kf.Q[4:,4:] *= 0.01
    #状态向量前面四个值用bbox初始化,变化率设置为0
    self.kf.x[:4] = convert_bbox_to_z(bbox)
3.2.2. 滤波器生命周期管理

滤波器生命周期的管理是通过几个变量来实现的,KalmanBoxTracker创建的时候会初始化几个变量:

self.time_since_update = 0
self.hits = 0
self.hit_streak = 0

如果Tracker匹配成功,就会更新这几个变量的状态:

def update(self, bbox):
    self.time_since_update = 0
    self.hit_streak += 1

如果Tracker做了一次预测,同样会更新这几个变量的状态:

def predict(self):
    if (self.time_since_update > 0):
        self.hit_streak = 0
    self.time_since_update += 1

time_since_update表示距离上一次带观测值更新滤波器状态过去了多久,hit_streak表示Tracker连续匹配成功并更新的次数,一旦调用predict()函数对当前帧做了预测,time_since_update就加一,表示其已经对当前帧做过一次预测了。

在算法的处理类Sort中,会对Tracker的这几个变量做判断:

  1. 一个匹配成功的Tracker,需要判断其是否还在“试用期”,只有连续几帧都匹配成功才能使用它的跟踪信息:

if (trk.time_since_update < 1) and 
    (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
    ret.append(np.concatenate((d, [trk.id+1])).reshape(1, -1))
  1. 如果下一帧Tracker未匹配成功,该Tracker就会被删除:

if (trk.time_since_update > self.max_age):
    self.trackers.pop(i)

4 总结

SORT目标跟踪算法仅使用卡尔曼滤波器和匈牙利算法解决帧与帧之间的状态预测和数据关联问题,跟踪的效果高度依赖于目标检测结果的好坏,算法整体设计非常简单,在速度和精度上取得较好的平衡,主要体现一个“快”字。当然,速度提升必然导致精度损失,SORT的缺点在于仅仅使用物体的边界框进行跟踪而忽略其表面特征,在复杂的场景中效果会比较差。另外,SORT没有目标重识别过程,一旦目标丢失就需要重新创建跟踪器去更新状态(一帧未匹配成功就需要重新跟踪),导致同一目标的ID频繁变换。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/688364.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】栈和队列-->理解和实现(赋源码)

Toc 欢迎光临我的Blog&#xff0c;喜欢就点歌关注吧♥ 前面介绍了顺序表、单链表、双向循环链表&#xff0c;基本上已经结束了链表的讲解&#xff0c;今天谈一下栈、队列。可以简单的说是前面学习的一特殊化实现&#xff0c;但是总体是相似的。 前言 栈是一种特殊的线性表&…

flask_sqlalchemy时间缓存导致datetime.now()时间不变问题

问题是这样的&#xff0c;项目在本地没什么问题&#xff0c;但是部署到服务器过一阵子发现&#xff0c;这个时间会在某一刻定死不变。 重启uwsgi后&#xff0c;发现第一条数据更新到了目前最新时间&#xff0c;过了一会儿再次发送也变了时间&#xff0c;但是再过几分钟再发就会…

【全开源】JAVA打车小程序APP打车顺风车滴滴车跑腿源码微信小程序打车源码

&#xff1a;构建便捷出行新体验 一、引言&#xff1a;探索打车系统小程序源码的重要性 在数字化快速发展的今天&#xff0c;打车系统小程序已成为我们日常生活中不可或缺的一部分。它以其便捷、高效的特点&#xff0c;极大地改变了我们的出行方式。而背后的关键&#xff0c;…

啵啵啵啵啵啵啵啵啵啵啵啵啵啵啵

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

swaggerHole:针对swaggerHub的公共API安全扫描工具

关于swaggerHole swaggerHole是一款针对swaggerHub的API安全扫描工具&#xff0c;该工具基于纯Python 3开发&#xff0c;可以帮助广大研究人员检索swaggerHub上公共API的相关敏感信息&#xff0c;整个任务过程均以自动化形式实现&#xff0c;且具备多线程特性和管道模式。 工具…

增加强制索引依然慢

版本: 阿里云RDS MySQL 8.0.25 线上数据库CPU达到100%, 定位到如下SQL EXPLAIN SELECT ssd.goods_no,ssd.goods_name,ssd.goods_spec,ssd.goods_unit,ssd.create_time,w.warehouse_name,sb.batch_no,swl.warehouse_region_location_name,sc.customer_name AS goodsOwnerName,s…

如何在MySQL中实现upsert:如果不存在则插入?

目录 1 使用 REPLACE 2 使用 INSERT ... ON DUPLICATE KEY UPDATE 使用 INSERT IGNORE 有效会导致 MySQL 在尝试执行语句时忽略执行错误 INSERT 。这意味着 包含 索引或 字段 INSERT IGNORE 中重复值的语句 不会 产生错误&#xff0c;而只是完全忽略该特定 命令。其明显目的是…

2048小游戏的菜鸡实现方法

# 2048小游戏的实现与分析 2048是一款非常受欢迎的数字滑块游戏&#xff0c;其目标是通过滑动和合并相同数字的方块来创建一个值为2048的方块。下面&#xff0c;我们将通过分析一个C语言实现的2048小游戏的源代码&#xff0c;来探索如何用编程实现这款游戏。 ## 游戏概述 20…

指针(初阶1)

一.指针是什么 通俗的讲&#xff0c;指针就是地址&#xff0c;其存在的意义就像宾馆房间的序号一样是为了更好的管理空间。 如下图&#xff1a; 如上图所示&#xff0c;指针就是指向内存中的一块空间&#xff0c;也就相当于地址 二.一个指针的大小是多少 之前我们学习过&#x…

Springboot注意点

1.Usermapper里加param注解 2.RequestParam 和 RequestBody的区别&#xff1a; RequestParam 和 RequestBody的区别&#xff1a; RequestParam 和 RequestBody 是Spring框架中用于处理HTTP请求的两个不同的注 get请求一般用url传参数&#xff0c;所以参数名和参数的值就在ur…

LCM — Least Common Multiple 最小公倍数

因为任何一个数都可以表示为若干个质数幂的乘积。 比如75 3*5*5&#xff0c;即 2^0 * 3^1 * 5^2 * 7^0 ... 那么对于两个数来说&#xff0c;gcd就是他们取每个质数的较小幂的乘积&#xff0c;lcm则相反。显然&#xff0c;这些幂加起来就是他们乘积。 gcd(a,b) * lcm(a,b) a…

立创·天空星开发板-GD32F407VE-USART

本文以 立创天空星开发板-GD32F407VET6-青春版 作为学习的板子&#xff0c;记录学习笔记。 立创天空星开发板-GD32F407VE-USART 基础通信概念同步通信 & 异步通信串行通信 & 并行通信双工 & 单工通讯速率码元 串口通信数据帧 串口封装 基础通信概念 通信协议是网络…

本地运行ChatTTS

TTS 是将文字转为语音的模型&#xff0c;最近很火的开源 TTS 项目&#xff0c;本地可以运行&#xff0c;运行环境 M2 Max&#xff0c;差不多每秒钟 4&#xff5e;&#xff5e;5 个字。本文将介绍如何在本地运行 ChatTTS。 下载源码 首先下载源代码 git clone https://github…

WPF中读取Excel文件的内容

演示效果 实现方案 1.首先导入需要的Dll(这部分可能需要你自己搜一下) Epplus.dll Excel.dll ICSharpCode.SharpZipLib.dll 2.在你的解决方案的的依赖项->添加引用->浏览->选择1中的这几个Dll点击确定。(添加依赖) 3.然后看代码内容 附上源码 using Excel; usi…

TypeScript环境安装与VScode编辑器的使用

说明大背景环境&#xff0c;我用的是window10系统。 1.安装node.js 。 去官网下载安装包。 虽然我去的是官网&#xff0c;但是不知为何下载了个不知名的东西&#xff0c;后来又找了个链接才下载正确了。 实际上就是一个.msi的文件。我用的版本&#xff1a;node-v18.19.0-x6…

【第四节】C/C++数据结构之树与二叉树

目录 一、基本概念与术语 二、树的ADT 三、二叉树的定义和术语 四、平衡二叉树 4.1 解释 4.2 相关经典操作 4.3 代码展示 一、基本概念与术语 树(Tree)是由一个或多个结点组成的有限集合T。其中: 1 有一个特定的结点&#xff0c;称为该树的根(root)结点&#xff1b; 2 …

GPT-4o:突出优势 和 应用场景

还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#xff0c;webgl&#xff0c;ech…

centos官方yum源不可用 解决方案(随手记)

昨天用yum安装软件的时候&#xff0c;就报错了 [rootop01 ~]# yum install -y net-tools CentOS Stream 8 - AppStream 73 B/s | 38 B 00:00 Error: Failed to download metadata for repo appstream: Cannot prepare internal mirrorlis…

从零开始:疾控中心实验室装修攻略,让你的实验室一步到位!

在当今充满挑战和变化的世界中&#xff0c;疾病的控制和预防成为了人类生存与发展的重要课题。而疾控中心作为防控疾病的核心机构&#xff0c;其疾控中心实验室设计建设显得尤为重要。下面广州实验室装修公司小编将分享疾控中心实验室设计建设方案&#xff0c;为疾病防控工作提…

“冻干”凭什么好吃不肥喵?既能当零食又可做主食的冻干分享

近年来&#xff0c;冻干猫粮因其高品质而备受喜爱&#xff0c;吸引了无数猫主人的目光&#xff0c;像我这样的资深养猫人早已开始选择冻干喂养。但新手养猫的人&#xff0c;可能会感到迷茫&#xff1a;冻干猫粮到底是什么&#xff1f;冻干可以一直当主食喂吗&#xff1f; 一、…