分水岭算法分割和霍夫变换识别图像中的硬币

首先解释一下第一种分水岭算法:

一、分水岭算法

分水岭算法是一种基于拓扑学的图像分割技术,广泛应用于图像处理和计算机视觉领域。它将图像视为一个拓扑表面,其中亮度值代表高度。算法的目标是通过模拟雨水从山顶流到山谷的过程,将图像分割成若干独立的区域。

分水岭算法的步骤和原理:

  1. 距离变换

    • 首先对图像进行预处理,将图像转化为灰度图,并进行二值化处理(如Otsu算法)。
    • 对二值图像应用距离变换,计算每个前景像素到最近的背景像素的距离,生成距离图。距离变换后的图像可以看作是一幅"地形图",前景像素的距离值越大,代表的高度越高。
  2. 寻找局部极大值

    • 在距离图中找到局部极大值点。这些点通常位于目标物体的中心位置,将作为初始标记。局部极大值点是那些比其邻域像素值更大的点。
  3. 创建标记图

    • 创建一个与原始图像大小相同的标记图,将局部极大值点的位置赋值为不同的标签(从1开始编号),其余区域标记为0。
  4. 应用分水岭算法

    • 将距离图的负值作为输入图像,标记图作为初始标记,应用分水岭算法。分水岭算法通过模拟水从局部极大值点流向低谷的过程,不断合并像素,形成分割区域。
    • 在这个过程中,水从局部极大值点流向低谷,如果两个不同的标签的水流在某处相遇,该处将被标记为边界。
  5. 生成分割结果

    • 分水岭算法最终会将图像分割成多个区域,每个区域对应一个标签。边界区域通常被标记为0。

分水岭算法的优点和缺点:

优点

  • 分水岭算法可以生成闭合的区域边界,适用于目标物体具有明确边界的图像。
  • 算法可以自动确定分割区域的数量,无需事先设定。

缺点

  • 对噪声和边缘模糊敏感,容易产生过分割,即将一个目标物体分割成多个区域。
  • 需要进行预处理以减少噪声和增强边缘(如均值漂移滤波)。

示例代码解释:

# 计算每个二值像素到最近零像素的精确欧几里得距离, 然后找到此距离图中的局部峰值
D = ndimage.distance_transform_edt(thresh)
localMax = peak_local_max(D, footprint=np.ones((3, 3)), min_distance=40, labels=thresh)

# 根据找到的局部峰值创建标记数组, 标记数组的值对应于每个硬币的序号
markers = np.zeros_like(thresh, dtype=np.int32)
markers[tuple(localMax.T)] = np.arange(1, len(localMax) + 1)

# 应用分水岭算法, 将图像分割为不同的区域
labels = watershed(-D, markers, mask=thresh)
  1. 计算距离变换ndimage.distance_transform_edt(thresh) 计算每个前景像素到最近背景像素的欧几里得距离,生成距离图 D
  2. 寻找局部极大值peak_local_max(D, footprint=np.ones((3, 3)), min_distance=40, labels=thresh) 在距离图中寻找局部极大值,这些点将作为初始标记。
  3. 创建标记图markers 初始化为全零矩阵,将局部极大值点的位置赋值为不同的标签。
  4. 应用分水岭算法labels = watershed(-D, markers, mask=thresh) 使用分水岭算法对距离图的负值进行分割,生成标签图 labels

通过以上步骤,分水岭算法将输入图像分割成若干独立区域,每个区域代表一个目标物体。

以检测这张图为例子:
在这里插入图片描述

使用分水岭算法流程如下:

  1. 读取图像并应用均值漂移滤波

    • 使用 cv2.imread 读取输入图像。
    • 使用 cv2.pyrMeanShiftFiltering 对图像进行均值漂移滤波,平滑图像并减少噪点。
  2. 转换为灰度图并二值化

    • 使用 cv2.cvtColor 将平滑后的图像转换为灰度图。
    • 使用 cv2.threshold 结合 Otsu 算法进行自动阈值二值化,将图像转换为二值图像。
  3. 计算欧几里得距离并找到局部峰值

    • 使用 ndimage.distance_transform_edt 计算每个二值像素到最近零像素的欧几里得距离,生成距离变换图。
    • 使用 peak_local_max 找到距离图中的局部峰值,这些峰值将作为分水岭算法的初始标记。
  4. 创建标记数组并应用分水岭算法

    • 创建一个与二值图像大小相同的标记数组 markers,将局部峰值的位置赋值为不同的标签。
    • 使用 watershed 函数进行分水岭算法,将图像分割成不同区域,每个区域对应一个硬币。
  5. 遍历分割出的不同区域,绘制轮廓和标签

    • 遍历分割后的标签,跳过背景标签(标签为0)。
    • 为每个硬币创建一个掩码图像,设置对应标签区域为白色,其余区域为黑色。
    • 使用 cv2.findContours 查找掩码图像中的轮廓,并找到最大的轮廓(即硬币区域)。
    • 使用 cv2.minEnclosingCircle 计算最小外接圆的圆心坐标和半径。
    • 在原始图像上绘制圆形轮廓和标签。
  6. 显示最终结果图像

    • 使用 cv2.imshow 显示处理后的图像。
    • 使用 cv2.waitKeycv2.destroyAllWindows 控制显示窗口。

上述流程通过图像平滑、二值化、距离变换、局部峰值检测和分水岭算法,实现了对硬币图像的分割,并在分割后的图像上绘制了硬币的轮廓和编号标签。
完整代码如下:

import numpy as np
import cv2
from skimage.feature import peak_local_max
from skimage.segmentation import watershed
from scipy import ndimage
import imutils

# 读取图像并应用均值漂移滤波来平滑图像,减少噪点
image = cv2.imread('/coins/1.jpg')
shifted = cv2.pyrMeanShiftFiltering(image, 21, 51)

# 将图像转换为灰度图,然后使用Otsu算法自动确定阈值进行二值化
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]

# 计算每个二值像素到最近零像素的精确欧几里得距离,然后找到此距离图中的局部峰值
# 这些峰值将作为分水岭算法的初始标记
D = ndimage.distance_transform_edt(thresh)
localMax = peak_local_max(D, footprint=np.ones((3, 3)), min_distance=40, labels=thresh)

# 根据找到的局部峰值创建标记数组,标记数组的值对应于每个硬币的序号
markers = np.zeros_like(thresh, dtype=np.int32)
markers[tuple(localMax.T)] = np.arange(1, len(localMax) + 1)

# 应用分水岭算法,将图像分割为不同的区域
labels = watershed(-D, markers, mask=thresh)

# 遍历分割出的不同区域,绘制出每个硬币的轮廓和标签
for label in np.unique(labels):
    if label == 0:
        continue

    # 创建一个掩码图像,将当前标签对应的区域设置为白色,其他区域设置为黑色
    mask = np.zeros(gray.shape, dtype="uint8")
    mask[labels == label] = 255

    # 查找掩码图像中的轮廓,并找到最大的轮廓(即硬币区域)
    cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)
    c = max(cnts, key=cv2.contourArea)

    # 计算最小外接圆的圆心坐标和半径
    ((x, y), r) = cv2.minEnclosingCircle(c)

    # 在原始图像上绘制圆形轮廓和标签
    cv2.circle(image, (int(x), int(y)), int(r), (0, 255, 0), 2)
    cv2.putText(image, "{}".format(label), (int(x) - 10, int(y)),
                cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

# 显示最终的结果图像
cv2.imshow("Output", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

分割结果如下:
在这里插入图片描述

二、 霍夫变换

霍夫变换(Hough Transform)是图像处理中的一种重要技术,用于检测图像中的几何形状。霍夫圆检测(Hough Circle Transform)是霍夫变换的一个具体应用,用于检测图像中的圆形物体。

霍夫圆检测的原理和步骤:

  1. 边缘检测

    • 首先对图像进行边缘检测,常用的方法是Canny边缘检测。边缘检测可以提取出图像中的显著边缘,减少数据量并突出目标物体的轮廓。
  2. 参数空间定义

    • 在检测圆的过程中,需要定义圆的参数空间。一个圆由三个参数定义:圆心坐标 (x, y) 和半径 r。霍夫圆检测将在参数空间中搜索圆的可能位置和大小。
  3. 投票累加

    • 在边缘检测后的二值图像中,每个边缘点 (x, y) 都会在参数空间中投票支持可能的圆心和半径组合。具体而言,对于每个边缘点 (x, y) 和每个可能的半径 r,可以根据圆的方程计算圆心坐标 (a, b):
      [
a = x - r \cdot \cos(\theta)
]
[
b = y - r \cdot \sin(\theta)
]

    • 在参数空间中累加 (a, b) 的投票次数。

  4. 检测局部最大值

    • 在参数空间中,投票次数最多的位置即为最可能的圆心和半径组合。通过检测参数空间中的局部最大值,确定圆的存在和位置。
  5. 绘制检测到的圆

    • 根据检测到的圆心坐标和半径,在原始图像上绘制圆形轮廓。

示例代码:

以下是一个使用OpenCV进行霍夫圆检测的示例代码:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊,减少噪声
blurred = cv2.GaussianBlur(gray, (9, 9), 2)

# 使用霍夫圆检测
circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, dp=1.2, minDist=20,
                           param1=50, param2=30, minRadius=15, maxRadius=30)

# 如果检测到圆
if circles is not None:
    circles = np.round(circles[0, :]).astype("int")
    
    for (x, y, r) in circles:
        # 绘制圆的轮廓
        cv2.circle(image, (x, y), r, (0, 255, 0), 4)
        # 绘制圆心
        cv2.rectangle(image, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)

# 显示结果图像
cv2.imshow("output", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

代码详解:

  1. 读取图像并转换为灰度图

    image = cv2.imread('image.jpg')
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    
  2. 应用高斯模糊

    • 使用高斯模糊(Gaussian Blur)来平滑图像,减少噪声。
    blurred = cv2.GaussianBlur(gray, (9, 9), 2)
    
  3. 使用霍夫圆检测

    • 调用 cv2.HoughCircles 函数进行霍夫圆检测。参数解释如下:
      • blurred:输入的灰度图像。
      • cv2.HOUGH_GRADIENT:检测方法,使用梯度信息。
      • dp=1.2:累加器分辨率与图像分辨率的反比关系。
      • minDist=20:检测到的圆之间的最小距离。
      • param1=50:Canny边缘检测的高阈值。
      • param2=30:累加器阈值,用于检测圆的阈值,越小越容易检测到不明显的圆。
      • minRadius=15maxRadius=30:检测圆的半径范围。
    circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, dp=1.2, minDist=20,
                               param1=50, param2=30, minRadius=15, maxRadius=30)
    
  4. 绘制检测到的圆

    • 如果检测到圆,将其绘制在原始图像上。
    if circles is not None:
        circles = np.round(circles[0, :]).astype("int")
        
        for (x, y, r) in circles:
            cv2.circle(image, (x, y), r, (0, 255, 0), 4)
            cv2.rectangle(image, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)
    
  5. 显示结果图像

    • 显示绘制了圆的结果图像。
    cv2.imshow("output", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

通过上述步骤和代码,霍夫圆检测可以在图像中自动识别和绘制圆形目标。
识别图中硬币的完整代码如下:

import cv2
import numpy as np

# 读取图像并转换为灰度图像
image = cv2.imread('/coins/1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊
gray = cv2.GaussianBlur(gray, (15, 15), 0)

# 使用霍夫圆变换检测圆
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, dp=1.2, minDist=50, param1=50, param2=30, minRadius=20,
                           maxRadius=60)

# 确保至少检测到一个圆
if circles is not None:
    circles = np.round(circles[0, :]).astype("int")

    for (i, (x, y, r)) in enumerate(circles):
        # 绘制圆圈和中心点
        cv2.circle(image, (x, y), r, (0, 255, 0), 2)
        cv2.putText(image, str(i + 1), (x - 10, y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

# 显示最终结果图像
cv2.imshow("Detected Coins", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

检测结果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/688317.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库存储过程和锁机制

存储过程 存储过程是事先经过编译并存储在数据库中的一段SQL语句的集合,调用存储过程可以简化应用开发人员的很多工作,减少数据在数据库和应用服务器之间的传输,对于提高数据处理的效率是有好处的,存储过程思想上很简单,就是数据库SQL语言层面的代码封装与有重用 …

【动态规划-BM69 把数字翻译成字符串】

题目 BM69 把数字翻译成字符串 描述 有一种将字母编码成数字的方式:‘a’->1, ‘b->2’, … , ‘z->26’。 现在给一串数字,返回有多少种可能的译码结果 分析 特判一个‘0’的情况 后面可以用动态规划: dp[n]为考虑前n个字符时&…

VMware虚拟机与MobaXterm建立远程连接失败

VMware虚拟机与MobaXterm建立远程连接失败 首先可以检查一下是不是虚拟机的ssh服务并不存在 解决方法: 1.更新镜像源 yum -y update 这个过程会有点久,请耐心等待 2.安装ssh yum install openssh-server 3.启动ssh systemctl restart sshd 4.查…

计算机毕业设计基于YOLOv8的头盔检测系统

1、安装Anaconda 官网下载或者哔哩哔哩有的up分享 https://www.anaconda.com/download 版本无所谓,安装位置不要有中文就行 2、创建环境yolov8 winR打开命令行 conda create -n yolov8 python3.9 3、打开源码 下载下来放到你想放的目录,直接用pyCharm或者…

NSSCTF CRYPTO MISC题解(一)

陇剑杯 2021刷题记录_[陇剑杯 2021]签到-CSDN博客 [陇剑杯 2021]签到 下载附件压缩包,解压后得到 后缀为.pcpang,为流量包,流量分析,使用wireshark打开 {NSSCTF} [陇剑杯 2021]签到 详解-CSDN博客 选择统计里面的协议分级 发现流…

go语言接口之接口值

概念上讲一个接口的值,接口值,由两个部分组成,一个具体的类型和那个类型的值。它们 被称为接口的动态类型和动态值。对于像Go语言这种静态类型的语言,类型是编译期的概 念;因此一个类型不是一个值。在我们的概念模型中…

DexCap——斯坦福李飞飞团队泡茶机器人:更好数据收集系统的原理解析、源码剖析

前言 2023年7月,我司组建大模型项目开发团队,从最开始的论文审稿,演变成目前的两大赋能方向 大模型应用方面,以微调和RAG为代表 除了论文审稿微调之外,目前我司内部正在逐一开发论文翻译、论文对话、论文idea提炼、论…

男士内裤怎么选?五款不能错过的超舒适男士内裤

在快节奏的现代都市生活中,男士们同样需要关注内在穿搭的品质与舒适度。一条优质贴身的男士内裤,不仅是日常穿着的舒适保障,更是展现男性精致品味的秘密武器。今天,就让我们一同探讨如何挑选出最适合自己的男士内裤,并…

劝大家:打个工而已,千万不要太老实,上周,我们单位一位兢兢业业,工作了20年的老员工,被公司辞退了...

学习资源已打包,需要的小伙伴可以戳这里 学习资料 在当今社会,职场竞争激烈,每个人都在努力工作,追求自己的目标。然而,随着工作经验的积累和观察的深入,我发现了一些工作中的现象,希望通过本文…

Asp .Net Core 系列:详解鉴权(身份验证)以及实现 Cookie、JWT、自定义三种鉴权 (含源码解析)

什么是鉴权(身份验证)? https://learn.microsoft.com/zh-cn/aspnet/core/security/authentication/?viewaspnetcore-8.0 定义 鉴权,又称身份验证,是确定用户身份的过程。它验证用户提供的凭据(如用户名和…

链表的回文结构OJ

链表的回文结构_牛客题霸_牛客网对于一个链表,请设计一个时间复杂度为O(n),额外空间复杂度为O(1)的算法,判断其是否为。题目来自【牛客题霸】https://www.nowcoder.com/practice/d281619e4b3e4a60a2cc66ea32855bfa?tpId49&&tqId29370&rp1&a…

大型语言模型简介

大型语言模型简介 大型语言模型 (LLM) 是一种深度学习算法,可以使用非常大的数据集识别、总结、翻译、预测和生成内容。 文章目录 大型语言模型简介什么是大型语言模型?为什么大型语言模型很重要?什么是大型语言模型示例?大型语…

[NOVATEK] NT96580行车记录仪功能学习笔记

一、u-Boot升级灯 运行u-Boot程序时LED灯闪烁,找到运行过程中一直在运行的函数在里面进行LED引脚电平的翻转 宏定义 Z:\SunFan\AHD580\pip\na51055_PIP\BSP\u-boot\include\configs\nvt-na51055-evb.h Z:\SunFan\AHD580\pip\na51055_PIP\BSP\u-boot\drivers\mtd\nvt_flash_…

华为鸿蒙开发-鸿蒙基于ARKTS开发之启动模式

前言 鸿蒙生态取得爆发式增长! 截至3月底,已有超4000个应用加入鸿蒙生态。 而在今年1月中旬,华为刚宣布HarmonyOS NEXT鸿蒙星河版面向开发者开放申请,这一版本鸿蒙系统也被称为“纯血鸿蒙”。 当时,华为宣布首批200…

构建自动化API数据抓取系统

构建一个自动化API数据抓取系统是一个涉及多个技术领域的复杂任务。这样的系统不仅要求高效的数据获取能力,还需要有稳定的数据处理、存储和错误处理机制。 1. 需求分析 在开始构建之前,明确你的需求至关重要。你需要确定要抓取的API、数据的频率、数据的…

自然语言处理:第三十三章FILCO:过滤内容的RAG

文章链接: [2311.08377] Learning to Filter Context for Retrieval-Augmented Generation (arxiv.org) 项目地址: zorazrw/filco: [Preprint] Learning to Filter Context for Retrieval-Augmented Generaton (github.com) 在人工智能领域,尤其是在开放域问答和事…

240508Scala笔记

240508Scala笔记 Scala概述: SCala是Java的拓展,在Java的基础上又拓展了一些语法,例如: 输出Hello World println("HelloWorld")System.out.println("Hello Scala from Java") 上面两段代码都可以输出内容. package chapter01 ​ /*object: 关键字,声明…

4_XMR交易过程

XMR交易过程 参考文档 书: 《精通门罗币 : 私密交易的未来》(Mastering Monero) 书中的代码示例: 《精通门罗币 : 私密交易的未来》深入探究门罗币与密码学门罗币的环签名分析官方介绍视频 1.隐匿地址 Stealth Address_Monero官方介绍视频2.环签名 Ring Signature_Monero官方…

Cortex-M7——NVIC

Cortex-M7——NVIC 小狼http://blog.csdn.net/xiaolangyangyang 一、NVIC架构 二、中断及异常编号 三、中断屏蔽寄存器(__disable_irq和__enable_irq操作的是PRIMASK寄存器) 四、中断分组寄存器(SCB->AIRCR[10:8]) 五、NVIC寄…

【转】ES, 广告索引

思考: 1)直接把别名切换到上一个版本索引 --解决问题 2)广告层级索引如何解决? -routing、join 3)查询的过程:query and fetch, 优化掉fetch 4)segment合并策略 5)全量写入时副…