course-nlp——6-rnn-english-numbers

本文参考自https://github.com/fastai/course-nlp。

使用 RNN 预测数字的英文单词版本

在上一课中,我们将 RNN 用作语言模型的一部分。今天,我们将深入了解 RNN 是什么以及它们如何工作。我们将使用尝试预测数字的英文单词版本的问题来实现这一点。

让我们预测这个序列中接下来应该是什么:

eight thousand one , eight thousand two , eight thousand three , eight thousand four , eight thousand five , eight thousand six , eight thousand seven , eight thousand eight , eight thousand nine , eight thousand ten , eight thousand eleven , eight thousand twelve…

Jeremy 创建了这个合成数据集,以便有更好的方法来检查事情是否正常、调试和了解发生了什么。在尝试新想法时,最好有一个较小的数据集来这样做,以便快速了解你的想法是否有前途(有关其他示例,请参阅 Imagenette 和 Imagewoof)这个英文单词数字将作为学习 RNN 的良好数据集。我们今天的任务是预测计数时接下来会出现哪个单词。

在深度学习中,有两种类型的数字

参数是学习到的数字。激活是计算出的数字(通过仿射函数和元素非线性)。

当你学习深度学习中的任何新概念时,问问自己:这是一个参数还是一个激活?

提醒自己:指出隐藏状态,从没有 for 循环的版本转到 for 循环。这是人们感到困惑的步骤。

Data

from fastai.text import *
bs=64
path = untar_data(URLs.HUMAN_NUMBERS)
path.ls()
[PosixPath('/home/racheltho/.fastai/data/human_numbers/models'),
 PosixPath('/home/racheltho/.fastai/data/human_numbers/valid.txt'),
 PosixPath('/home/racheltho/.fastai/data/human_numbers/train.txt')]
def readnums(d): return [', '.join(o.strip() for o in open(path/d).readlines())]

train.txt 为我们提供了以英文单词写出的数字序列:

train_txt = readnums('train.txt'); train_txt[0][:80]
'one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirt'
valid_txt = readnums('valid.txt'); valid_txt[0][-80:]
' nine thousand nine hundred ninety eight, nine thousand nine hundred ninety nine'
train = TextList(train_txt, path=path)
valid = TextList(valid_txt, path=path)

src = ItemLists(path=path, train=train, valid=valid).label_for_lm()
data = src.databunch(bs=bs)
train[0].text[:80]
'xxbos one , two , three , four , five , six , seven , eight , nine , ten , eleve'
len(data.valid_ds[0][0].data)
13017

bptt 代表时间反向传播。这告诉我们正在考虑多少历史步骤。

data.bptt, len(data.valid_dl)
(70, 3)

我们的验证集中有 3 个批次:

13017 个标记,每行文本中约有 ~70 个标记,每批次有 64 行文本。

13017/70/bs
2.905580357142857

我们将每个批次存储在单独的变量中,这样我们就可以通过这个过程更好地理解 RNN 在每个步骤中的作用:

it = iter(data.valid_dl)
x1,y1 = next(it)
x2,y2 = next(it)
x3,y3 = next(it)
it.close()
x1
tensor([[ 2, 19, 11,  ..., 36,  9, 19],
        [ 9, 19, 11,  ..., 24, 20,  9],
        [11, 27, 18,  ...,  9, 19, 11],
        ...,
        [20, 11, 20,  ..., 11, 20, 10],
        [20, 11, 20,  ..., 24,  9, 20],
        [20, 10, 26,  ..., 20, 11, 20]], device='cuda:0')
numel() is a PyTorch method to return the number of elements in a tensor:
x1.numel()+x2.numel()+x3.numel()
13440
x1.shape, y1.shape
(torch.Size([64, 70]), torch.Size([64, 70]))
x2.shape, y2.shape
(torch.Size([64, 70]), torch.Size([64, 70]))
x3.shape, y3.shape
(torch.Size([64, 70]), torch.Size([64, 70]))
v = data.valid_ds.vocab
v.itos
['xxunk',
 'xxpad',
 'xxbos',
 'xxeos',
 'xxfld',
 'xxmaj',
 'xxup',
 'xxrep',
 'xxwrep',
 ',',
 'hundred',
 'thousand',
 'one',
 'two',
 'three',
 'four',
 'five',
 'six',
 'seven',
 'eight',
 'nine',
 'twenty',
 'thirty',
 'forty',
 'fifty',
 'sixty',
 'seventy',
 'eighty',
 'ninety',
 'ten',
 'eleven',
 'twelve',
 'thirteen',
 'fourteen',
 'fifteen',
 'sixteen',
 'seventeen',
 'eighteen',
 'nineteen']
x1[:,0]
tensor([ 2,  9, 11, 12, 13, 11, 10,  9, 10, 14, 19, 25, 19, 15, 16, 11, 19,  9,
        10,  9, 19, 25, 19, 11, 19, 11, 10,  9, 19, 20, 11, 26, 20, 23, 20, 20,
        24, 20, 11, 14, 11, 11,  9, 14,  9, 20, 10, 20, 35, 17, 11, 10,  9, 17,
         9, 20, 10, 20, 11, 20, 11, 20, 20, 20], device='cuda:0')
y1[:,0]
tensor([19, 19, 27, 10,  9, 12, 32, 19, 26, 10, 11, 15, 11, 10,  9, 15, 11, 19,
        26, 19, 11, 18, 11, 18,  9, 18, 21, 19, 10, 10, 20,  9, 11, 16, 11, 11,
        13, 11, 13,  9, 13, 14, 20, 10, 20, 11, 24, 11,  9,  9, 16, 17, 20, 10,
        20, 11, 24, 11, 19,  9, 19, 11, 11, 10], device='cuda:0')
v.itos[9], v.itos[11], v.itos[12], v.itos[13], v.itos[10]
(',', 'thousand', 'one', 'two', 'hundred')
v.textify(x1[0])
'xxbos eight thousand one , eight thousand two , eight thousand three , eight thousand four , eight thousand five , eight thousand six , eight thousand seven , eight thousand eight , eight thousand nine , eight thousand ten , eight thousand eleven , eight thousand twelve , eight thousand thirteen , eight thousand fourteen , eight thousand fifteen , eight thousand sixteen , eight thousand seventeen , eight'
v.textify(x1[1])
', eight thousand forty six , eight thousand forty seven , eight thousand forty eight , eight thousand forty nine , eight thousand fifty , eight thousand fifty one , eight thousand fifty two , eight thousand fifty three , eight thousand fifty four , eight thousand fifty five , eight thousand fifty six , eight thousand fifty seven , eight thousand fifty eight , eight thousand fifty nine ,'
v.textify(x2[1])
'eight thousand sixty , eight thousand sixty one , eight thousand sixty two , eight thousand sixty three , eight thousand sixty four , eight thousand sixty five , eight thousand sixty six , eight thousand sixty seven , eight thousand sixty eight , eight thousand sixty nine , eight thousand seventy , eight thousand seventy one , eight thousand seventy two , eight thousand seventy three , eight thousand'
v.textify(y1[0])
'eight thousand one , eight thousand two , eight thousand three , eight thousand four , eight thousand five , eight thousand six , eight thousand seven , eight thousand eight , eight thousand nine , eight thousand ten , eight thousand eleven , eight thousand twelve , eight thousand thirteen , eight thousand fourteen , eight thousand fifteen , eight thousand sixteen , eight thousand seventeen , eight thousand'
v.textify(x2[0])
'thousand eighteen , eight thousand nineteen , eight thousand twenty , eight thousand twenty one , eight thousand twenty two , eight thousand twenty three , eight thousand twenty four , eight thousand twenty five , eight thousand twenty six , eight thousand twenty seven , eight thousand twenty eight , eight thousand twenty nine , eight thousand thirty , eight thousand thirty one , eight thousand thirty two ,'
v.textify(x3[0])
'eight thousand thirty three , eight thousand thirty four , eight thousand thirty five , eight thousand thirty six , eight thousand thirty seven , eight thousand thirty eight , eight thousand thirty nine , eight thousand forty , eight thousand forty one , eight thousand forty two , eight thousand forty three , eight thousand forty four , eight thousand forty five , eight thousand forty six , eight'
v.textify(x1[1])
', eight thousand forty six , eight thousand forty seven , eight thousand forty eight , eight thousand forty nine , eight thousand fifty , eight thousand fifty one , eight thousand fifty two , eight thousand fifty three , eight thousand fifty four , eight thousand fifty five , eight thousand fifty six , eight thousand fifty seven , eight thousand fifty eight , eight thousand fifty nine ,'
v.textify(x2[1])
'eight thousand sixty , eight thousand sixty one , eight thousand sixty two , eight thousand sixty three , eight thousand sixty four , eight thousand sixty five , eight thousand sixty six , eight thousand sixty seven , eight thousand sixty eight , eight thousand sixty nine , eight thousand seventy , eight thousand seventy one , eight thousand seventy two , eight thousand seventy three , eight thousand'
v.textify(x3[1])
'seventy four , eight thousand seventy five , eight thousand seventy six , eight thousand seventy seven , eight thousand seventy eight , eight thousand seventy nine , eight thousand eighty , eight thousand eighty one , eight thousand eighty two , eight thousand eighty three , eight thousand eighty four , eight thousand eighty five , eight thousand eighty six , eight thousand eighty seven , eight thousand eighty'
v.textify(x3[-1])
'ninety , nine thousand nine hundred ninety one , nine thousand nine hundred ninety two , nine thousand nine hundred ninety three , nine thousand nine hundred ninety four , nine thousand nine hundred ninety five , nine thousand nine hundred ninety six , nine thousand nine hundred ninety seven , nine thousand nine hundred ninety eight , nine thousand nine hundred ninety nine xxbos eight thousand one , eight'
data.show_batch(ds_type=DatasetType.Valid)

在这里插入图片描述
我们将迭代地考虑一些不同的模型,构建更传统的 RNN。

单一全连接模型

data = src.databunch(bs=bs, bptt=3)
x,y = data.one_batch()
x.shape,y.shape
(torch.Size([64, 3]), torch.Size([64, 3]))
nv = len(v.itos); nv
39
nh=64
def loss4(input,target): return F.cross_entropy(input, target[:,-1])
def acc4 (input,target): return accuracy(input, target[:,-1])
x[:,0]
tensor([13, 13, 10,  9, 18,  9, 11, 11, 13, 19, 16, 23, 24,  9, 12,  9, 13, 14,
        15, 11, 10, 22, 15,  9, 10, 14, 11, 16, 10, 28, 11,  9, 20,  9, 15, 15,
        11, 18, 10, 28, 23, 24,  9, 16, 10, 16, 19, 20, 12, 10, 22, 16, 17, 17,
        17, 11, 24, 10,  9, 15, 16,  9, 18, 11])

Layer names:

  • i_h: input to hidden
  • h_h: hidden to hidden
  • h_o: hidden to output
  • bn: batchnorm
class Model0(nn.Module):
    def __init__(self):
        super().__init__()
        self.i_h = nn.Embedding(nv,nh)  # green arrow
        self.h_h = nn.Linear(nh,nh)     # brown arrow
        self.h_o = nn.Linear(nh,nv)     # blue arrow
        self.bn = nn.BatchNorm1d(nh)
        
    def forward(self, x):
        h = self.bn(F.relu(self.i_h(x[:,0])))
        if x.shape[1]>1:
            h = h + self.i_h(x[:,1])
            h = self.bn(F.relu(self.h_h(h)))
        if x.shape[1]>2:
            h = h + self.i_h(x[:,2])
            h = self.bn(F.relu(self.h_h(h)))
        return self.h_o(h)
learn = Learner(data, Model0(), loss_func=loss4, metrics=acc4)
learn.fit_one_cycle(6, 1e-4)

在这里插入图片描述

循环也一样

让我们重构一下,使用 for 循环。它的作用和之前一样:

class Model1(nn.Module):
    def __init__(self):
        super().__init__()
        self.i_h = nn.Embedding(nv,nh)  # green arrow
        self.h_h = nn.Linear(nh,nh)     # brown arrow
        self.h_o = nn.Linear(nh,nv)     # blue arrow
        self.bn = nn.BatchNorm1d(nh)
        
    def forward(self, x):
        h = torch.zeros(x.shape[0], nh).to(device=x.device)
        for i in range(x.shape[1]):
            h = h + self.i_h(x[:,i])
            h = self.bn(F.relu(self.h_h(h)))
        return self.h_o(h)

这是展开的 RNN 图(我们之前的 RNN 图)和卷起的 RNN 图(我们现在的 RNN 图)之间的区别:

learn = Learner(data, Model1(), loss_func=loss4, metrics=acc4)
learn.fit_one_cycle(6, 1e-4)

在这里插入图片描述
我们的准确性大致相同,因为我们做的事情与以前相同。

多重全连接模型

之前,我们只是预测一行文本中的最后一个单词。给定 70 个标记,标记 71 是什么?这种方法会丢弃大量数据。为什么不根据标记 1 预测标记 2,然后预测标记 3,然后预测标记 4,依此类推?我们将修改模型来做到这一点。

data = src.databunch(bs=bs, bptt=20)
x,y = data.one_batch()
x.shape,y.shape
(torch.Size([64, 20]), torch.Size([64, 20]))
class Model2(nn.Module):
    def __init__(self):
        super().__init__()
        self.i_h = nn.Embedding(nv,nh)
        self.h_h = nn.Linear(nh,nh)
        self.h_o = nn.Linear(nh,nv)
        self.bn = nn.BatchNorm1d(nh)
        
    def forward(self, x):
        h = torch.zeros(x.shape[0], nh).to(device=x.device)
        res = []
        for i in range(x.shape[1]):
            h = h + self.i_h(x[:,i])
            h = F.relu(self.h_h(h))
            res.append(self.h_o(self.bn(h)))
        return torch.stack(res, dim=1)
learn = Learner(data, Model2(), metrics=accuracy)

在这里插入图片描述

请注意,我们的准确率现在变差了,因为我们在做一项更艰巨的任务。当我们预测单词 k(k<70)时,我们能获得的历史记录比我们仅预测单词 71 时要少。(Model2每次forward调用时都重新初始化h)

维持状态

为了解决这个问题,让我们保留上一行文本的隐藏状态,这样我们就不会在每一行新文本上重新开始。

class Model3(nn.Module):
    def __init__(self):
        super().__init__()
        self.i_h = nn.Embedding(nv,nh)
        self.h_h = nn.Linear(nh,nh)
        self.h_o = nn.Linear(nh,nv)
        self.bn = nn.BatchNorm1d(nh)
        self.h = torch.zeros(bs, nh).cuda()
        
    def forward(self, x):
        res = []
        h = self.h
        for i in range(x.shape[1]):
            h = h + self.i_h(x[:,i])
            h = F.relu(self.h_h(h))
            res.append(self.bn(h))
        self.h = h.detach()
        res = torch.stack(res, dim=1)
        res = self.h_o(res)
        return res
learn = Learner(data, Model3(), metrics=accuracy)
earn.fit_one_cycle(20, 3e-3)

在这里插入图片描述
现在我们获得的准确性比以前更高了!(h.detach()防止累积梯度回传)

nn.RNN

class Model4(nn.Module):
    def __init__(self):
        super().__init__()
        self.i_h = nn.Embedding(nv,nh)
        self.rnn = nn.RNN(nh,nh, batch_first=True)
        self.h_o = nn.Linear(nh,nv)
        self.bn = BatchNorm1dFlat(nh)
        self.h = torch.zeros(1, bs, nh).cuda()
        
    def forward(self, x):
        res,h = self.rnn(self.i_h(x), self.h)
        self.h = h.detach()
        return self.h_o(self.bn(res))
learn = Learner(data, Model4(), metrics=accuracy)
learn.fit_one_cycle(20, 3e-3)

在这里插入图片描述

2-layer GRU

当你拥有较长的时间尺度和较深的网络时,这些就变得无法训练。解决这个问题的一种方法是添加 mini-NN 来决定保留多少绿色箭头和多少橙色箭头。这些 mini-NN 可以是 GRU 或 LSTM。我们将在后面的课程中介绍更多细节。

class Model5(nn.Module):
    def __init__(self):
        super().__init__()
        self.i_h = nn.Embedding(nv,nh)
        self.rnn = nn.GRU(nh, nh, 2, batch_first=True)
        self.h_o = nn.Linear(nh,nv)
        self.bn = BatchNorm1dFlat(nh)
        self.h = torch.zeros(2, bs, nh).cuda()
        
    def forward(self, x):
        res,h = self.rnn(self.i_h(x), self.h)
        self.h = h.detach()
        return self.h_o(self.bn(res))
learn = Learner(data, Model5(), metrics=accuracy)
learn.fit_one_cycle(10, 1e-2)

在这里插入图片描述

Connection to ULMFit

在上一课中,我们基本上用分类器替换了 self.h_o 来对文本进行分类。

结尾

RNN 只是一个重构的全连接神经网络。

你可以使用相同的方法处理任何序列标记任务(词性、分类材料是否敏感等)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/684968.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

安全测试 之 安全漏洞 CSRF

1. 背景 安全测试是在功能测试的基础上进行的&#xff0c;它验证软件的安全需求&#xff0c;确保产品在遭受恶意攻击时仍能正常运行&#xff0c;并保护用户信息不受侵犯。 2. CSRF 定义 CSRF&#xff08;Cross-Site Request Forgery&#xff09;&#xff0c;中文名为“跨站请…

Xmind Pro 2024 专业版激活码(附下载链接)

说到思维导图&#xff0c;就不能不提 Xmind。这是一款优秀的思维导图工具&#xff0c;拥有着丰富的导图模板&#xff0c;漂亮的界面和配色&#xff0c;以及各种各样的创意工具。 新架构速度更快 采用全新 Snowdancer 引擎&#xff0c;一种堪称「黑科技」的先进图形渲染技术。…

JDK17 AQS源码分析

AQS 概览AQS官方解释简单来说 JDK17 中 AQS源码分析Lock 阶段UnLock 阶段什么时候取消排队呢&#xff1f; 在学习阳哥的 JUC课程的时候&#xff0c;阳哥讲AQS用的是JDK8&#xff0c;我用的是JDK17&#xff0c;想着自己分析一下&#xff0c;分析完之后发现JDK17与JDK8还是有些不…

Linux系统之fc命令的基本使用

Linux系统之fc命令的基本使用 一、fc命令介绍1.1 fc命令简介1.2 fc命令用途 二、fc命令的帮助信息2.1 fc的man帮助2.2 fc命令的使用帮助2.3 fc命令与history命令区别 三、fc命令的基本使用3.1 显示最近执行的命令3.2 指定序号查询历史命令3.3 使用vim编辑第n条历史命令3.4 替换…

ElementUI之el-tooltip显示多行内容

ElementUI之el-tooltip显示多行内容 文章目录 ElementUI之el-tooltip显示多行内容1. 多行文本实现2. 实现代码3. 展示效果 1. 多行文本实现 展示多行文本或者是设置文本内容的格式&#xff0c;使用具名 slot 分发content&#xff0c;替代tooltip中的content属性。 2. 实现代码 …

JAVA-学习-2

一、类 1、类的定义 把相似的对象划分了一个类。 类指的就是一种模板&#xff0c;定义了一种特定类型的所有对象的属性和行为 在一个.java的问题件中&#xff0c;可以有多个class&#xff0c;但是智能有一个class是用public的class。被声明的public的class&#xff0c;必须和文…

【CTF-Web】文件上传漏洞学习笔记(ctfshow题目)

文件上传 文章目录 文件上传What is Upload-File&#xff1f;Upload-File In CTFWeb151考点&#xff1a;前端校验解题&#xff1a; Web152考点&#xff1a;后端校验要严密解题&#xff1a; Web153考点&#xff1a;后端校验 配置文件介绍解题&#xff1a; Web154考点&#xff1a…

ChatTTS webUI API:ChatTTS本地网页界面的高效文本转语音、同时支持API调用!

原文链接&#xff1a;&#xff08;更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号&#xff01;&#xff09; ChatTTS webUI & API&#xff1a;ChatTTS本地网页界面的高效文本转语音、同时支持API调用&#xff01; &#x1f31f;一个简单的本地网…

【Python学习1】matplotlib和pandas库绘制人口数变化曲线

✍&#x1f3fb;记录学习过程中的输出&#xff0c;坚持每天学习一点点~ ❤️希望能给大家提供帮助~欢迎点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;指点&#x1f64f; 一、Python库说明 Matplotlib Matplotlib是一个功能强大的Python 2D绘图库&#xff0c;它允…

汇编:x86汇编环境搭建与基础框架(32位)

32位汇编代码编写环境&#xff1a;Visual Studio&#xff08;笔者用的版本为2017&#xff09;&#xff1b;先来说一下在Visual Studio 2017中编写汇编代码的准备操作&#xff1a; ①创建空项目 ②设置项目属性&#xff1a;平台工具集设置为Visual Studio 2015(v140)&#xff0…

怎么用PHP语言实现远程控制两路照明开关

怎么用PHP语言实现远程控制两路开关呢&#xff1f; 本文描述了使用PHP语言调用HTTP接口&#xff0c;实现控制两路开关&#xff0c;两路开关可控制两路照明、排风扇等电器。 可选用产品&#xff1a;可根据实际场景需求&#xff0c;选择对应的规格 序号设备名称厂商1智能WiFi墙…

搜索与图论:深度优先搜索

搜索与图论&#xff1a;深度优先搜索 题目描述参考代码 题目描述 参考代码 #include <iostream>using namespace std;const int N 10;int n; int path[N]; bool st[N];void dfs(int u) {// u n 搜索到最后一层if (u n){for (int i 0; i < n; i) printf("%d …

中国游戏产业月度报告分享 | 洞察游戏行业市场

作为中国音像与数字出版协会主管的中国游戏产业研究院的战略合作伙伴&#xff0c;伽马数据发布了《2024年4月中国游戏产业月度报告》。 数据显示&#xff0c; 2024年4月&#xff0c;中国游戏市场实际销售收入224.32亿元&#xff0c;环比下降4.21%&#xff0c;同比下降0.27%。移…

Qt无边框

最简单的可拖动对话框(大小不可改变) #ifndef DIALOG_H #define DIALOG_H/*** file dialog.h* author lpl* brief 无边框dialog类* date 2024/06/05*/ #include <QDialog> #include <QMouseEvent> namespace Ui { class Dialog; } /*** brief The Dialog class* 无…

如何把试卷上的字去掉再打印?分享三种方法

如何把试卷上的字去掉再打印&#xff1f;随着科技的不断发展&#xff0c;现代教育和学习方式也在逐渐变革。在学习过程中&#xff0c;我们经常需要对试卷进行整理和分析&#xff0c;以便更好地掌握知识点和复习。然而&#xff0c;传统的试卷整理方法往往效率低下且容易出错。幸…

六月的魔力:揭秘2024年加密市场与Reflection的创新与收益

回想过去加密货币市场的沉浮&#xff0c;一年中市场的阶段性牛市大多发生在下半年&#xff0c;六月似乎是一个神奇的时间节点。每年六月一到&#xff0c;加密货币市场仿佛突然被按下启动按钮&#xff0c;沉寂的土狗开始扶苏&#xff0c;经过半年准备的各大项目方开始蠢蠢欲动。…

27-unittest之断言(assert)

在测试方法中需要判断结果是pass还是fail&#xff0c;自动化测试脚本里面一般把这种生成测试结果的方法称为断言&#xff08;assert&#xff09;。 使用unittest测试框架时&#xff0c;有很多的断言方法&#xff0c;下面介绍几种常用的断言方法&#xff1a;assertEqual、assert…

MySql每天从0开始生成特定规则自增编号

一、前言 1、按一定规则生单号&#xff0c;要求不重复 2、例如&#xff1a;前缀 日期 不重复流水号&#xff0c;whgz-20240528-00001 二、数据库操作 1、MySQL新建一张表sys_sequence seq_name 序列名称 current_val 当前编号 increment_val 步长 CREATE TABLE sys_sequ…

kafka-消费者-消费异常处理(SpringBoot整合Kafka)

文章目录 1、消费异常处理1.1、application.yml配置1.2、注册异常处理器1.3、消费者使用异常处理器1.4、创建生产者发送消息1.5、创建SpringBoot启动类1.6、屏蔽 kafka debug 日志 logback.xml1.7、引入spring-kafka依赖1.8、消费者控制台&#xff1a;1.8.1、第一次启动SpringK…

【案例分享】明道数云为阿联酋迪拜公司Eastman BLDG打造外贸管理系统

内容概要 本文介绍了Eastman公司与明道数云软件的合作&#xff0c;通过数字化解决方案提升了Eastman在贸易管理中的效率。Eastman公司位于阿联酋迪拜&#xff0c;周边城市有门店&#xff0c;人数大概在30&#xff0c;是一家主营瓷砖和石材类产品的贸易公司&#xff0c;面临着各…