3072. 将元素分配到两个数组中 II Rust 线段树 + 离散化

题目

给你一个下标从 1 开始、长度为 n 的整数数组 nums

现定义函数 greaterCount ,使得 greaterCount(arr, val) 返回数组 arr 中 严格大于 val 的元素数量。

你需要使用 n 次操作,将 nums 的所有元素分配到两个数组 arr1arr2 中。在第一次操作中,将 nums[1] 追加到 arr1 。在第二次操作中,将 nums[2] 追加到 arr2 。之后,在第 i 次操作中:

如果 greaterCount(arr1, nums[i]) > greaterCount(arr2, nums[i]) ,将 nums[i] 追加到 arr1
如果 greaterCount(arr1, nums[i]) < greaterCount(arr2, nums[i]),将 nums[i] 追加到 arr2
如果 greaterCount(arr1, nums[i]) == greaterCount(arr2, nums[i]) ,将 nums[i] 追加到元素数量较少的数组中。
如果仍然相等,那么将 nums[i] 追加到 arr1
连接数组 arr1arr2 形成数组 result 。例如,如果 arr1 == [1,2,3]arr2 == [4,5,6] ,那么 result = [1,2,3,4,5,6]

返回整数数组 result

示例

示例 1

输入:nums = [2,1,3,3]
输出:[2,3,1,3]
解释:在前两次操作后,arr1 = [2] ,arr2 = [1] 。
在第 3 次操作中,两个数组中大于 3 的元素数量都是零,并且长度相等,因此,将 nums[3] 追加到 arr1 。
在第 4 次操作中,两个数组中大于 3 的元素数量都是零,但 arr2 的长度较小,因此,将 nums[4] 追加到 arr2 。
在 4 次操作后,arr1 = [2,3] ,arr2 = [1,3] 。
因此,连接形成的数组 result 是 [2,3,1,3] 。

示例 2

输入:nums = [5,14,3,1,2]
输出:[5,3,1,2,14]
解释:在前两次操作后,arr1 = [5] ,arr2 = [14] 。
在第 3 次操作中,两个数组中大于 3 的元素数量都是一,并且长度相等,因此,将 nums[3] 追加到 arr1 。
在第 4 次操作中,arr1 中大于 1 的元素数量大于 arr2 中的数量(2 > 1),因此,将 nums[4] 追加到 arr1 。
在第 5 次操作中,arr1 中大于 2 的元素数量大于 arr2 中的数量(2 > 1),因此,将 nums[5] 追加到 arr1 。
在 5 次操作后,arr1 = [5,3,1,2] ,arr2 = [14] 。
因此,连接形成的数组 result 是 [5,3,1,2,14] 。

示例 3

输入:nums = [3,3,3,3]
输出:[3,3,3,3]
解释:在 4 次操作后,arr1 = [3,3] ,arr2 = [3,3] 。
因此,连接形成的数组 result 是 [3,3,3,3] 。

提示:

3 <= n <= 105
1 <= nums[i] <= 109

思路

离散化 + 线段树,由于基础的线段树可以AC,不再使用懒标记去优化。

AC代码

use std::collections::HashMap;

struct Tree{
    tree: Vec<i32>
}

impl Tree {
    pub fn new(len: usize) -> Self {
        Tree {
            tree: vec![0; len]
        }
    }

    /**
     * 更新
     **/
    pub fn update(&mut self, node: usize, sign_idx: usize, l: usize, r: usize) {
        if l == r {
            self.tree[node] += 1;
            return;
        }
        let mid: usize = l + r >> 1;
        let l_node: usize = (node << 1) + 1;
        let r_node: usize = l_node + 1;
        if sign_idx <= mid {
            self.update(l_node, sign_idx, l, mid);
        } else {
            self.update(r_node, sign_idx, mid + 1, r);
        }
        self.tree[node] = self.tree[l_node] + self.tree[r_node];
    }

    /**
     * 查询
     **/
    pub fn query(&mut self, node: usize, l: usize, r: usize, start: usize, end: usize) -> i32 {
        if l > end || r < start {
            return 0;
        }
        if l >= start && r <= end {
            return self.tree[node];
        }
        let mid: usize = l + r >> 1;
        let l_node: usize = (node << 1) + 1;
        let r_node: usize = l_node + 1;
        self.query(l_node, l, mid, start, end) + self.query(r_node, mid + 1, r, start, end)
    }
}

impl Solution {
    pub fn result_array(v: Vec<i32>) -> Vec<i32> {
        let len: usize = v.len();
        let tree_len: usize = len << 2;
        let mut tree1: Tree = Tree::new(tree_len);
        let mut tree2: Tree = Tree::new(tree_len);
        let mut arr1: Vec<i32> = vec![v[0]];
        let mut arr2: Vec<i32> = vec![v[1]];
        let mut mp: HashMap<usize, usize> = HashMap::new();
        let mut cp_v: Vec<i32> = v.clone();
        cp_v.sort();
        
        for (idx, tem) in cp_v.iter().enumerate() {
            mp.insert(*tem as usize, idx);
        }

        if let Some(tem_val) = mp.get(&(v[0] as usize)) {
            tree1.update(0, *tem_val, 0, len - 1);
        }
        
        if let Some(tem_val) = mp.get(&(v[1] as usize)) {
            tree2.update(0, *tem_val, 0, len - 1);
        }
        
        for idx in 2 .. len {
            let val: i32 = v[idx];
            let mut mp_val: usize = 0;

            if let Some(tem_val) = mp.get(&(val as usize)) {
                mp_val = *tem_val;
            }            
            
            let s1: i32 = tree1.query(0, 0, len - 1, mp_val + 1, len - 1);
            let s2: i32 = tree2.query(0, 0, len - 1, mp_val + 1, len - 1);

            if s1 > s2 {
                arr1.push(val);
                tree1.update(0, mp_val, 0, len - 1);
                continue;
            }

            if s2 > s1 {
                arr2.push(val);
                tree2.update(0, mp_val, 0, len - 1);
                continue;
            }

            let len1: usize =  arr1.len();
            let len2: usize = arr2.len();
            
            if len1 <= len2 {
                arr1.push(val);
                tree1.update(0, mp_val, 0, len - 1);
            } else {
                arr2.push(val);
                tree2.update(0, mp_val, 0, len - 1);
            }
        }

        arr1.extend(arr2);
        arr1
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/683264.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

docker 存储 网络 命令

文章目录 1 docker存储1.1 目录挂载2.1卷映射2.1.1卷映射和目录挂载的区别2.1.2卷映射的使用 2 docker网络2.1查看docker的默认网络2.2查看容器的IP2.3容器互通2.4自定义网络2.4.1 创建自定义网络2.4.2创建容器的时候加入到自定义的网络2.4.3使用域名进行容器之间的访问2.4.4re…

LeetCode-92. 反转链表 II【链表】

LeetCode-92. 反转链表 II【链表】 题目描述&#xff1a;解题思路一&#xff1a;简单的翻转链表操作背诵版&#xff1a;解题思路三&#xff1a;0 题目描述&#xff1a; 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 …

[Linux] 软链接使用绝对路径的重要性

文章目录 软链接使用绝对路径的重要性软链接路径复制软链接查看文件类型 软链接使用绝对路径的重要性 软链接路径 软链接必须指定绝对路径&#xff0c;否则复制软链接后&#xff0c;由于软链接的相对路径是从软链接所处位置开始解析的&#xff0c;因此使用相对路径的软链接可…

一次 K8s 故障诊断:从 CPU 高负载到存储挂载泄露根源揭示

一、背景 现代软件部署中&#xff0c;容器技术已成为不可或缺的一环&#xff0c;在云计算和微服务架构中发挥着核心作用。随着容器化应用的普及&#xff0c;确保容器环境的可靠性成为了一个至关重要的任务。这就是容器SRE&#xff08;Site Reliability Engineering&#xff0c…

2024首发!会声会影2024旗舰版,专业编辑新体验!

会声会影2024最新旗舰版是一款专业的视频编辑软件&#xff0c;它集成了多种高级功能&#xff0c;为用户带来极致的视频编辑体验。在这篇文章中&#xff0c;我们将详细介绍该软件的功能和特色&#xff0c;帮助用户更好地了解和使用它。 会声会影全版本绿色安装包获取链接&#…

HarmonyOS鸿蒙-DevEco Studio工具

一、官网下载DevEco Studio工具地址 文章内容: 1、下载工具 2、运行项目 3、安装启动器 https://developer.harmonyos.com/cn/develop/deveco-studio/https://developer.harmonyos.com/cn/develop/deveco-studio/ 下载不同平台工具目录 : 二、 安装DevEco Studio工具 安装的配置…

分布式架构与分布式理论

文章目录 分布式架构什么是分布式系统分布式系统特性分布式系统面临的问题 分布式理论数据一致性CAP理论BASE理论 分布式架构 什么是分布式系统 分布式系统是一个硬件或软件组件分布在不同的网络计算机上&#xff0c;彼此之间仅仅通过消息传递进行通信和协调的系统。 所谓分…

html+CSS+js部分基础运用15

1、完成输入框内容的实时反向输出。 2、银行账户余额变动自动通知项目。 设计要求&#xff1a;单击按钮后&#xff0c;余额按照输入框的数额减少&#xff0c;同时将按钮式的提示信息&#xff08;金额&#xff09;同步改变。利用侦听属性实现余额发生变化时发出提示信息&#x…

LabVIEW减压阀和温控阀综合测试系统

在使用LabVIEW开发阀门测试软件时&#xff0c;特别是针对减压阀和温控阀&#xff0c;测试内容和注意事项包括以下方面&#xff1a; 测试内容 压力测试&#xff1a; 入口压力&#xff1a;测量阀门在不同入口压力下的表现。 出口压力&#xff1a;确保减压阀能够将出口压力控制在…

【一百零六】【算法分析与设计】并查集的实现,P3367 【模板】并查集,sizee集合的元素个数信息

并查集的实现 描述 给定一个没有重复值的整形数组arr&#xff0c;初始时认为arr中每一个数各自都是一个单独的集合。请设计一种叫UnionFind的结构&#xff0c;并提供以下两个操作。 boolean isSameSet(int a, int b): 查询a和b这两个数是否属于一个集合 void union(int a, int …

学习笔记——IP地址网络协议——VLSM-可变长子网掩码(子网划分)

四、VLSM-可变长子网掩码(子网划分) 1、为什么要子网划分 为什么要子网划分&#xff1a;有类IP地址规划的缺陷。IP地址空间只能按照默认的类别使用&#xff0c;例如一个B类地址&#xff0c;默认掩码为255.255.0.0&#xff0c;意味着这个地址空间里有2的16次方个IP&#xff0c;…

IDEA的使用配置Maven(及selenium+webdriver的下载配置)

一. 下载maven 1. maven官网下载链接 2.​​安装第二行第一列的zip压缩包 ​​​​​​​​ 二. 配置环境变量 1.新建环境变量 2.在系统变量Path环境变量中添加%Maven_HOME%\bin 三.验证环境变量是否配置成功 winr >cmd>mvn -v 如果出现Maven的版本信息&#xff0…

Nginx设置缓存后,访问网页404 问题原因及解决方案(随手记)

目录 问题描述Nginx文件 解决方案查看error_log日志问题原因修改文件并测试Nginx文件测试 总结 问题描述 在Nginx中设置缓存expires后&#xff0c;结果重启nginx&#xff0c;网站访问404了。 Nginx文件 server {listen 80;server_name bird.test.com;location / {root /app/…

PID算法在电机速度控制上的应用

目录 概述 1 系统硬件框架 1.1 框架介绍 1.2 硬件实物图 2 STM32Cub生成工程 2.1 软件版本信息 2.2 配置参数 ​编辑2.3 生成项目 3 PID算法实现 3.1 概念 3.2 代码实现 4 其他功能实现 4.1 设置电机速度 4.2 PID算法控制电机 4.3 功能函数的调用 5 测试 5.1 …

Java中常用的单目运算符及用法详解

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一…

2024年清洁能源与可持续发展国际会议(ICDESMF 2024)

2024 International Conference on Clean Energy and Sustainable Development 【1】大会信息 会议简称&#xff1a;ICDESMF 2024 大会时间&#xff1a;2024-07-22 大会地点&#xff1a;中国大理 截稿时间&#xff1a;2024-07-08(以官网为准&#xff09; 审稿通知&#xff1a…

JFinal学习06 控制器——getPara()接收数据

JFinal学习06 控制器——getPara()接收数据 视频来源https://www.bilibili.com/video/BV1Bt411H7J9/?spm_id_from333.337.search-card.all.click 文章目录 JFinal学习06 控制器——getPara()接收数据零、JFinal数据提交的三种方式一、get提交二、post提交三、url参数化提交四、…

【全开源】Shopro社区团购(小程序版)

邻里间的购物新选择 基于Fastadmin后端管理系统Uniapp客户端&#xff08;仅支持微信小程序&#xff09;开发&#xff0c;生鲜果蔬社区团购的不二之选、快速搭建社区团购平台、让你的产品走进上千个社区。线上团购线下自提&#xff0c;玩转社区消费新模式提供专业、优质的社区团…

计算机网络 期末复习(谢希仁版本)第5章

**屏蔽作用&#xff1a;**运输层向高层用户屏蔽了下面网络核心的细节&#xff08;如网络拓扑、所采用的路由选择协议等&#xff09;&#xff0c;使应用进程看见的就是好像在两个运输层实体之间有一条端到端的逻辑通信信道。 10. 端口用一个 16 位端口号进行标志&#xff0c;允许…

Linux—小小内核升级

本篇主要是讲述下关于内核的一些基本常识&#xff0c;并记录下内核升级和编译的过程&#xff0c;若有遗漏/有误之处&#xff0c;望各位大佬们指出。 Ⅰ 基本内核常识 常见内核安装包 内核(kernel)&#xff1a;这是Linux操作系统的核心部分&#xff0c;它负责管理系统的硬件和…