【LLM】度小满金融大模型技术创新与应用探索

note

  1. 从通用大模型到金融大模型
  2. 金融大模型的训练技术创新
  3. 金融大模型的评测方法创新
  4. 金融大模型的应用实践创新
  5. 总结:金融大模型迭代路径

一、轩辕大模型

在这里插入图片描述

二、垂直大模型训练

在这里插入图片描述

1. 数据准备

数据质量是模型效果的保障。首先数据要丰富,这是必备的条件。我们在这一环节做了非常多的工作,也设计了一套通用的数据流水线。从文本的抽取到数据的清洗,再到最后做一些人工的校验和评估,不断反复迭代。原始的中文数据,通过篇章级的过滤,一直到最后质量模型的排序,大概可以形成 32% 的中文数据。最后,形成了 10TB 的通用语料,加上 1TB 的金融语料。当然我们还在做更多的数据,特别是一些行业领域内专有数据的清洗。在这里插入图片描述

2. 增量预训练:

在数据准备完之后,就要去做预训练。需要针对中文场景做词表构建,对此,行业内大概有两种解决方案。一种是通过字粒度去扩充,因为汉字只看一个单词的话相对有限,大概数量是 5K 到 8K。另外一种就是很多中文大模型所采用的方法,即大量引入中文词汇,这样词表会比较大。考虑到对原有模型要尽量减少破坏,所以我们最终采用了字粒度扩容的方式,加入了 7K 的中文字符。这使得我们的整个词表大小达到 39K,词表压缩率为 48%。

在预训练阶段词表优化完之后,训练采用的是两阶段的优化方式,使得收敛更加稳定。第一阶段主要还是解决新加词表的泛化能力,我们仅更新模型词表的 embedding 以及解码线性层,使模型能够适应新的词表。在整个过程中,数据分布与原始的数据分布基本是一致的,就是为了保证模型的稳定性。在训练过程中我们发现,通过少量数据,能够使模型的 loss 达到平稳。所以第一阶段只训练了 40B 的 token。第二阶段对模型进行全量的更新,这时会训练大量的中文语料和英文语料。在这一阶段,我们训练了 300B 的 token。

在这里插入图片描述
数据配比直接影响基座模型的训练质量。开始时整体的中英语料是 3 比 1。在英文数据上,一开始仅加入了少量的金融数据。随着整个训练过程的不断优化,金融数据的比例也越来越高。在训练过程中,要保证原有的英文能力。

3. 指令微调

指令微调:SFT 数据的丰富性和多样性直接影响对齐效果。在数据生成上,分为通用数据生成和金融专业领域数据生成。整体配比大概是 4 比 1。我们通过不同方式的自动生成以及人工改写,最后生成一个包含许多种类的 SFT 数据结果。

采用两阶段指令微调,保证通用能力的同时,提升金融问答能力。第一阶段是通过混合微调,用海量开源指令数据,同时加入一些预训练数据,保证其泛化性,并且可以有效减少幻觉问题。第二阶段是通过高质量的指令微调数据,提升整体的对话能力。整体的训练方式与预训练是一致的。
在这里插入图片描述

4. 强化学习对齐

价值对齐:通过强化学习对齐价值偏好
接下来要做的是价值对齐,就是使模型的三观与我们一致,我们使用强化学习技术来对齐价值偏好。首先基于人类反馈做 reward model,这里我们选择 pair wise 的方式,并通过大量的人工标注排序。之后用 PPO 算法进行优化。未来,价值对齐会是做大模型非常核心的一个壁垒。

三、工程能力的优化

在这里插入图片描述

优化:
在这里插入图片描述

四、模型评测

在这里插入图片描述
FinanceIQ评测体系:
在这里插入图片描述

Reference

[1] 度小满金融大模型技术创新与应用探索

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/683205.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

hcache缓存查看工具

1、hcache概述 hcache是基于pcstat的,pcstat可以查看某个文件是否被缓存和根据进程pid来查看都缓存了哪些文件。hcache在其基础上增加了查看整个操作系统Cache和根据使用Cache大小排序的特性。官网:https://github.com/silenceshell/hcache 2、hcache安装 2.1下载…

Python Flask 入门开发

Python基础学习: Pyhton 语法基础Python 变量Python控制流Python 函数与类Python Exception处理Python 文件操作Python 日期与时间Python Socket的使用Python 模块Python 魔法方法与属性 Flask基础学习: Python中如何选择Web开发框架?Pyth…

【Tool】Matlab 数据分析可视化

一、问题描述 近期围绕imu总是出现问题,自己整理了一下将数据可视化的工具 二、imu 类 1. 待处理数据格式 # yaw roll pitch time -2.08131 -0.0741765 0.0200713 121.281000000 -2.08724 -0.0745256 0.0197222 121.301000000 -2.093 -0.075747…

【机器学习基础】Python编程01:五个实用练习题的解析与总结

Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机器学习库,如scikit-learn、TensorFlow、Keras和PyTorch等,这些…

吴恩达2022机器学习专项课程C2W3:2.24 机器学习实践建议(决定下一步做什么模型评估模型选择交叉验证)

目录 引言一、绘图评估模型的局限性二、使用测试集评估模型1.线性回归2.逻辑回归3.测试误差与泛化误差 三、测试集评估模型存在的问题1.评估模型流程2.流程存在的问题 四、解决问题1.训练集分割成三段2.计算交叉验证集的误差 五、重新评估模型1.线性回归模型2.神经网络模型3.评…

Android 14.0 Settings主页面去掉自定义您的设备等菜单相关功能

1.前言 在14.0的系统rom产品定制化开发中,在系统Settings主页面的主菜单中,在测试某些功能的时候,比如开启护眼模式和改变系统密度会在主菜单第一项的网络菜单头部增加 自定义您的设备和设置护眼模式时间安排 等等相关的设置模块 这对于菜单布局显示相当不美观,所以根据系…

SpringBoot+Redis发送短信

SpringBootRedis发送短信 pom.xml <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId&g…

【TB作品】 51单片机8x8点阵显示滚动汉字仿真

功能 题目5基于51单片机LED8x8点阵显示 流水灯 直接滚动显示HELLO 直接滚动显示老师好 代码 void main( void ) {/** 移位后&#xff0c;右边的是第一个595&#xff0c;接收0X02&#xff0c;显示出0X02* 移位后&#xff0c;左边的是第2个595&#xff0c;接收0Xfe&#xff0c…

git 的基本操作 Master and branch的版本合并 @ VS 1019

前言&#xff1a; 在VS 2019有git 的可视化管理,但&#xff0c;感觉微软其实就是在git上包了一层。版本冲突后&#xff0c;还是要靠git 的命令行代码搞。本文记录了一次&#xff0c;branch和master的版本合并的过程。作为&#xff0c;后续的参考。 【注意&#xff0c;这个是一…

最短路径——迪杰斯特拉与弗洛伊德算法

一.迪杰斯特拉算法 首先对于最短路径来说&#xff1a;从vi-vj的最短路径&#xff0c;不用非要经过所有的顶点&#xff0c;只需要找到路径最短的路径即可&#xff1b; 那么迪杰斯特拉的算法&#xff1a;其实也就与最小生成树的思想类似&#xff0c;找到较小的&#xff0c;然后…

JavaScript 学习笔记 总结

回顾&#xff1a; Web页面标准 页面结构&#xff1a;HTML4、HTML5页面外观和布局&#xff1a;CSS页面行为&#xff1a;JavaScript强调三者的分离前后端分离开发模式 响应式设计Bootstrap框架入门 Bootstrap总结 基础 下载和使用基础样式&#xff1a;文本样式、图片样式、表格…

多表连接查询和子查询

一、连接查询 连接查询是SQL语言最强大的功能之一&#xff0c;它可以执行查询时动态的将表连接起来&#xff0c;然后从中查询数据。 1.1、连接两表的方法 在SQL中连接两表可以有两种方法&#xff0c;一种是无连接规则连接&#xff0c;另一种是有连接规则连接。 无连接规则连…

matlab模拟黑洞包含吸积盘和喷流,简单模拟

本文介绍 黑洞的简单实现和模拟 代码 % Black Hole Simulation in 3D% Clear workspace and figures clear; close all; clc;% Create figure and set axis properties figure; axis([-10 10 -10 10 -10 10]); hold on; grid on; view(3);% Parameters for the black hole a…

【数据库】SQL--DDL(初阶)

文章目录 DDL1. 数据库操作1.1. 表操作1.1.1 创建1.1.2. 查询 2. 数据类型及案例2.1 数值类型2.2 字符串类型2.3 日期时间类型2.4 案例练习 3. 表操作--修改3.1 添加字段3.2 修改字段3.3 修改表名 4. 表操作-删除4.1 删除字段4.2 删除表 5. DDL小结 更多数据库MySQL系统内容就在…

MySQL经典面试题:谈一谈对于数据库索引的理解~~

文章目录 什么是索引&#xff1f;为什么要引入索引&#xff1f;引入索引的代价操作索引的SQL语句索引背后的数据结构B树B 树 回顾思考☁️结语 什么是索引&#xff1f; 数据库中的索引&#xff0c;就相当于一本书的目录。 什么是书的目录&#xff1f;相信大家都并不陌生&#…

【三】Linux网络配置详解

在RHEL 7系统中配置网络的方法有好几种&#xff0c;咱们这边先讲一下使用图形化工具和修改配置文件这两种方法来配置&#xff0c;其他方法大家可以下去自己研究研究。 一、使用图形化方式配置&#xff1a; 在电脑左上角开始一次点击Applications、System Tools、Settings&…

【Flask-项目运行】解决用本机IP访问不到flask项目而用localhost可以访问到的问题

文章目录 一、问题描述二、解决办法 一、问题描述 使用 localhost 或 127.0.0.1 能访问到项目&#xff1a; 但是使用局域网 IP 访问不到&#xff1a; 二、解决办法 只需要在 app.py 中修改一行代码&#xff1a; run方法添加 host 参数指明全部 ip 可访问。

B端数据看板,其实数据可以更美的。

B端数据看板可以通过设计来提升其美观度。 色彩和配色方案&#xff1a; 选择适合品牌和数据类型的色彩搭配方案。使用渐变色、明亮的色调和对比度来突出重要的数据指标。 数据可视化&#xff1a; 使用图表、图形和数据图像来呈现数据&#xff0c;使其更易于理解和解读。选择…

2024会声会影全新旗舰版,下载体验!

在当今数字时代&#xff0c;视频内容已成为最受欢迎的媒介之一。无论是个人娱乐、教育还是商业推广&#xff0c;优秀的视频制作都是吸引观众的关键。为了满足广大用户对高质量视频制作软件的需求&#xff0c;我们隆重推出了会声会影2024最新旗舰版。这款软件不仅集成了最先进的…

手撸 串口交互命令行 及 AT应用层协议解析框架

在嵌入式系统开发中&#xff0c;命令行接口&#xff08;CLI&#xff09;和AT命令解析是常见的需求。CLI提供了方便的调试接口&#xff0c;而AT命令则常用于模块间的通信控制。本文将介绍如何手动实现一个串口交互的命令行及AT应用层协议解析框架&#xff0c;适用于FreeRTOS系统…