实战:Zig 编写高性能 Web 服务(2)

1.1 编写 HTTP server

我们从python -m http.server 8000启动得到灵感,先确定好目标:

  • 编写一个HTTP/1.1 http server
  • zig version 0.12.0

使用zig init搭建项目的前置工作你先自行搭建好,不会的翻看前面铺垫的章节熟悉zig的项目结构。

关键文件build.zig:

const std = @import("std");

// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
    // Standard target options allows the person running `zig build` to choose
    // what target to build for. Here we do not override the defaults, which
    // means any target is allowed, and the default is native. Other options
    // for restricting supported target set are available.
    const target = b.standardTargetOptions(.{});

    // Standard optimization options allow the person running `zig build` to select
    // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
    // set a preferred release mode, allowing the user to decide how to optimize.
    const optimize = b.standardOptimizeOption(.{});

    const exe = b.addExecutable(.{
        .name = "zig-http-server",
        .root_source_file = .{ .path = "src/main.zig" },
        .target = target,
        .optimize = optimize,
        // .use_llvm = false,
        // .use_lld = false,
    });

    const xev = b.dependency("libxev", .{ .target = target, .optimize = optimize });
    exe.root_module.addImport("xev", xev.module("xev"));

    // This declares intent for the executable to be installed into the
    // standard location when the user invokes the "install" step (the default
    // step when running `zig build`).
    b.installArtifact(exe);

    // This *creates* a Run step in the build graph, to be executed when another
    // step is evaluated that depends on it. The next line below will establish
    // such a dependency.
    const run_cmd = b.addRunArtifact(exe);

    // By making the run step depend on the install step, it will be run from the
    // installation directory rather than directly from within the cache directory.
    // This is not necessary, however, if the application depends on other installed
    // files, this ensures they will be present and in the expected location.
    run_cmd.step.dependOn(b.getInstallStep());

    // This allows the user to pass arguments to the application in the build
    // command itself, like this: `zig build run -- arg1 arg2 etc`
    if (b.args) |args| {
        run_cmd.addArgs(args);
    }

    // This creates a build step. It will be visible in the `zig build --help` menu,
    // and can be selected like this: `zig build run`
    // This will evaluate the `run` step rather than the default, which is "install".
    const run_step = b.step("run", "Run the app");
    run_step.dependOn(&run_cmd.step);
}

build.zig.zon文件:

.{
    .name = "zig-http-server",
    .version = "0.0.0",
    .dependencies = .{
        .libxev = .{
            .url = "https://codeload.github.com/mitchellh/libxev/tar.gz/b3f9918776b8700b337b7ebe769060328fe246b0",
            .hash = "122044caf67c7833c7110dc93531031899e459a6818ed125a0bcfdb0b5243bd7700b",
        },
    },
    .paths = .{
        "",
    },
}

马上开始我们的编程之旅,打开src/main.zig文件:

const std = @import("std");
const xev = @import("xev");

const net = std.net;
const Allocator = std.mem.Allocator;

const CompletionPool = std.heap.MemoryPoolExtra(xev.Completion, .{});
const ClientPool = std.heap.MemoryPoolExtra(Client, .{});

const xev = @import("xev");

我们采用了第三方的类库:mitchellh/libxev,libxev 是一个跨平台、高性能的事件循环库,提供了非阻塞 IO、定时器、事件等的抽象,并且能够在 Linux(io_uring 或 epoll)、macOS(kqueue)以及 Wasm + WASI 上运行。它既可以作为 Zig 语言的 API,也可以作为 C 语言的 API 使用。

我们需要建一个Client的结构体,代表一个网络客户端。这个客户端结构体包含了几个字段,如id(客户端ID)、socket(网络套接字)、loop(事件循环)、arena(内存分配器)、client_pool(客户端内存池)和completion_pool(完成操作内存池)。此外,它还有一个用于读取数据的缓冲区read_buf。

Client结构体还定义以下方法:

  • work:这个方法启动客户端的工作流程,它创建了一个Completion对象,并使用socket.read方法开始读取数据。
  • readCallback:这个回调函数在数据读取完成后被调用。它处理读取的结果,如果成功,则打印出读取的数据,并准备一个HTTP响应。然后,它使用socket.write方法发送响应。
  • writeCallback:这个回调函数在响应发送完成后被调用。它关闭套接字连接。
  • shutdownCallback:这个回调函数在套接字关闭后被调用。它调用socket.close方法来关闭套接字。
  • closeCallback:这个回调函数在套接字关闭完成后被调用。它清理资源,包括销毁Completion对象和Client对象本身。
  • destroy:这个方法用于手动销毁客户端资源。

这个Client结构体实现了一个简单的HTTP服务器,它能够读取客户端的请求,并返回一个包含"Hello, World!"消息的HTTP响应。每个客户端都有自己的内存分配器和内存池,用于管理内存分配和释放。当客户端连接关闭时,所有分配的内存都会被清理。代码片段如下:

const Client = struct {
    id: u32,
    socket: xev.TCP,
    loop: *xev.Loop,
    arena: std.heap.ArenaAllocator,
    client_pool: *ClientPool,
    completion_pool: *CompletionPool,
    read_buf: [4096]u8 = undefined,

    const Self = @This();

    pub fn work(self: *Self) void {
        const c_read = self.completion_pool.create() catch unreachable;
        self.socket.read(self.loop, c_read, .{ .slice = &self.read_buf }, Client, self, Client.readCallback);
    }

    pub fn readCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        s: xev.TCP,
        buf: xev.ReadBuffer,
        r: xev.TCP.ReadError!usize,
    ) xev.CallbackAction {
        const self = self_.?;
        const n = r catch |err| {
            std.log.err("read error {any}", .{err});
            s.shutdown(l, c, Client, self, shutdownCallback);
            return .disarm;
        };
        const data = buf.slice[0..n];

        std.log.info("{s}", .{data});

        const httpOk =
            \\HTTP/1.1 200 OK
            \\Content-Type: text/plain
            \\Server: xev-http
            \\Content-Length: {d}
            \\Connection: close
            \\
            \\{s}
        ;

        const content_str =
            \\Hello, World! {d}
        ;

        const content = std.fmt.allocPrint(self.arena.allocator(), content_str, .{self.id}) catch unreachable;
        const res = std.fmt.allocPrint(self.arena.allocator(), httpOk, .{ content.len, content }) catch unreachable;

        self.socket.write(self.loop, c, .{ .slice = res }, Client, self, writeCallback);

        return .disarm;
    }

    fn writeCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        s: xev.TCP,
        buf: xev.WriteBuffer,
        r: xev.TCP.WriteError!usize,
    ) xev.CallbackAction {
        _ = buf; // autofix
        _ = r catch unreachable;

        const self = self_.?;
        s.shutdown(l, c, Client, self, shutdownCallback);

        return .disarm;
    }

    fn shutdownCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        s: xev.TCP,
        r: xev.TCP.ShutdownError!void,
    ) xev.CallbackAction {
        _ = r catch {};

        const self = self_.?;
        s.close(l, c, Client, self, closeCallback);
        return .disarm;
    }

    fn closeCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        socket: xev.TCP,
        r: xev.TCP.CloseError!void,
    ) xev.CallbackAction {
        _ = l;
        _ = r catch unreachable;
        _ = socket;

        var self = self_.?;
        self.arena.deinit();
        self.completion_pool.destroy(c);
        self.client_pool.destroy(self);
        return .disarm;
    }

    pub fn destroy(self: *Self) void {
        self.arena.deinit();
        self.client_pool.destroy(self);
    }
};

 我们还需要定义名为Server的结构体,它代表了一个网络服务器。这个服务器结构体包含了几个字段,如loop(事件循环)、gpa(全局内存分配器)、completion_pool(完成操作内存池)、client_pool(客户端内存池)和conns(当前连接数)。

Server结构体定义了一个方法:

  • acceptCallback:这个回调函数在服务器接受到新的客户端连接时被调用。它创建了一个新的Client对象,并初始化它的各个字段,包括客户端ID、事件循环、网络套接字、内存分配器和内存池。然后,它调用client.work()方法来开始处理客户端请求。

这个回调函数的目的是接受新的客户端连接,并为每个连接创建一个Client实例来处理它。在创建了新的客户端实例后,它会增加conns计数器来记录当前的连接数。最后,它返回xev.CallbackAction.rearm,这意味着服务器会继续监听新的连接。

这个Server结构体实现了一个简单的网络服务器,它能够接受客户端连接,并为每个连接创建一个Client对象来处理通信。服务器使用内存池来管理客户端实例的内存分配,以提高性能和减少内存碎片。代码片段如下:

const Server = struct {
    loop: *xev.Loop,
    gpa: Allocator,
    completion_pool: *CompletionPool,
    client_pool: *ClientPool,
    conns: u32 = 0,

    fn acceptCallback(
        self_: ?*Server,
        l: *xev.Loop,
        // we ignore the completion, to keep the accept loop going for new connections
        _: *xev.Completion,
        r: xev.TCP.AcceptError!xev.TCP,
    ) xev.CallbackAction {
        const self = self_.?;
        var client = self.client_pool.create() catch unreachable;
        client.* = Client{
            .id = self.conns,
            .loop = l,
            .socket = r catch unreachable,
            .arena = std.heap.ArenaAllocator.init(self.gpa),
            .client_pool = self.client_pool,
            .completion_pool = self.completion_pool,
        };
        client.work();

        self.conns += 1;

        return .rearm;
    }
};

1.2 进入main实现

main整体流程是:

  1. 初始化线程池和事件循环。
  2. 创建一个TCP套接字,并绑定到指定的地址和端口。
  3. 开始监听传入的连接。
  4. 初始化完成池和客户端池。
  5. 创建一个服务器结构体,包含所有必要的组件。
  6. 注册一个接受连接的回调函数。
  7. 运行事件循环,等待连接和处理事件。

http服务处理的就是多线程,所以我们借助了第三方类库xev来管理线程池。

var thread_pool = xev.ThreadPool.init(.{});
    defer thread_pool.deinit();
    defer thread_pool.shutdown();
  •  我们创建了一个xev.ThreadPool类型的变量thread_pool,并初始化它。xev是一个库,ThreadPool是这个库中的一个类型,用于管理线程池。
  • defer关键字用于注册一个函数,这个函数会在当前作用域结束时被调用。这里我们注册了thread_pool.deinit()和thread_pool.shutdown(),确保线程池在程序结束时被正确关闭和清理。
const port = 3000;
const addr = try net.Address.parseIp4("0.0.0.0", port);
var socket = try xev.TCP.init(addr);

std.log.info("Listening on port {}", .{port});

try socket.bind(addr);
try socket.listen(std.os.linux.SOMAXCONN);

绑定socket接口的方式,可以看出zig的简洁之道,和C一样。

socket.accept(&loop, c, Server, &server, Server.acceptCallback);

这行代码调用socket.accept方法,用于接受传入的连接。这个方法需要几个参数:

  • &loop:事件循环的引用,用于注册接受连接的事件。
  • c:完成事件的引用,用于在连接被接受时通知服务器。
  • Server:服务器结构体的类型,用于类型检查。
  • &server:服务器结构体的引用,用于在接受连接时传递给回调函数。
  • Server.acceptCallback:服务器结构体中的一个函数,当连接被接受时会被调用。
try loop.run(.until_done);

这行代码启动事件循环,并开始处理事件。run方法会阻塞当前线程,直到事件循环被关闭或者发生错误。.until_done是一个枚举值,表示事件循环应该运行直到所有任务都完成。

然后在项目直接运行zig build run就可以启动。main.zig完整代码如下:

const std = @import("std");
const xev = @import("xev");

const net = std.net;
const Allocator = std.mem.Allocator;

const CompletionPool = std.heap.MemoryPoolExtra(xev.Completion, .{});
const ClientPool = std.heap.MemoryPoolExtra(Client, .{});

pub fn main() !void {
    var thread_pool = xev.ThreadPool.init(.{});
    defer thread_pool.deinit();
    defer thread_pool.shutdown();

    var loop = try xev.Loop.init(.{
        .entries = 4096,
        .thread_pool = &thread_pool,
    });
    defer loop.deinit();

    var gpa = std.heap.GeneralPurposeAllocator(.{}){};
    defer _ = gpa.deinit();
    const alloc = gpa.allocator();

    const port = 3000;
    const addr = try net.Address.parseIp4("0.0.0.0", port);
    var socket = try xev.TCP.init(addr);

    std.log.info("Listening on port {}", .{port});

    try socket.bind(addr);
    try socket.listen(std.os.linux.SOMAXCONN);

    var completion_pool = CompletionPool.init(alloc);
    defer completion_pool.deinit();

    var client_pool = ClientPool.init(alloc);
    defer client_pool.deinit();

    const c = try completion_pool.create();
    var server = Server{
        .loop = &loop,
        .gpa = alloc,
        .completion_pool = &completion_pool,
        .client_pool = &client_pool,
    };

    socket.accept(&loop, c, Server, &server, Server.acceptCallback);
    try loop.run(.until_done);
}

const Client = struct {
    id: u32,
    socket: xev.TCP,
    loop: *xev.Loop,
    arena: std.heap.ArenaAllocator,
    client_pool: *ClientPool,
    completion_pool: *CompletionPool,
    read_buf: [4096]u8 = undefined,

    const Self = @This();

    pub fn work(self: *Self) void {
        const c_read = self.completion_pool.create() catch unreachable;
        self.socket.read(self.loop, c_read, .{ .slice = &self.read_buf }, Client, self, Client.readCallback);
    }

    pub fn readCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        s: xev.TCP,
        buf: xev.ReadBuffer,
        r: xev.TCP.ReadError!usize,
    ) xev.CallbackAction {
        const self = self_.?;
        const n = r catch |err| {
            std.log.err("read error {any}", .{err});
            s.shutdown(l, c, Client, self, shutdownCallback);
            return .disarm;
        };
        const data = buf.slice[0..n];

        std.log.info("{s}", .{data});

        const httpOk =
            \\HTTP/1.1 200 OK
            \\Content-Type: text/plain
            \\Server: xev-http
            \\Content-Length: {d}
            \\Connection: close
            \\
            \\{s}
        ;

        const content_str =
            \\Hello, World! {d}
        ;

        const content = std.fmt.allocPrint(self.arena.allocator(), content_str, .{self.id}) catch unreachable;
        const res = std.fmt.allocPrint(self.arena.allocator(), httpOk, .{ content.len, content }) catch unreachable;

        self.socket.write(self.loop, c, .{ .slice = res }, Client, self, writeCallback);

        return .disarm;
    }

    fn writeCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        s: xev.TCP,
        buf: xev.WriteBuffer,
        r: xev.TCP.WriteError!usize,
    ) xev.CallbackAction {
        _ = buf; // autofix
        _ = r catch unreachable;

        const self = self_.?;
        s.shutdown(l, c, Client, self, shutdownCallback);

        return .disarm;
    }

    fn shutdownCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        s: xev.TCP,
        r: xev.TCP.ShutdownError!void,
    ) xev.CallbackAction {
        _ = r catch {};

        const self = self_.?;
        s.close(l, c, Client, self, closeCallback);
        return .disarm;
    }

    fn closeCallback(
        self_: ?*Client,
        l: *xev.Loop,
        c: *xev.Completion,
        socket: xev.TCP,
        r: xev.TCP.CloseError!void,
    ) xev.CallbackAction {
        _ = l;
        _ = r catch unreachable;
        _ = socket;

        var self = self_.?;
        self.arena.deinit();
        self.completion_pool.destroy(c);
        self.client_pool.destroy(self);
        return .disarm;
    }

    pub fn destroy(self: *Self) void {
        self.arena.deinit();
        self.client_pool.destroy(self);
    }
};

const Server = struct {
    loop: *xev.Loop,
    gpa: Allocator,
    completion_pool: *CompletionPool,
    client_pool: *ClientPool,
    conns: u32 = 0,

    fn acceptCallback(
        self_: ?*Server,
        l: *xev.Loop,
        // we ignore the completion, to keep the accept loop going for new connections
        _: *xev.Completion,
        r: xev.TCP.AcceptError!xev.TCP,
    ) xev.CallbackAction {
        const self = self_.?;
        var client = self.client_pool.create() catch unreachable;
        client.* = Client{
            .id = self.conns,
            .loop = l,
            .socket = r catch unreachable,
            .arena = std.heap.ArenaAllocator.init(self.gpa),
            .client_pool = self.client_pool,
            .completion_pool = self.completion_pool,
        };
        client.work();

        self.conns += 1;

        return .rearm;
    }
};

1.3 运行效果:

1.3 学习总结

理解上面代码的关键是理解Zig中的基本概念,如defer、try、结构体、方法和事件循环的工作原理。同时,理解xev库的使用也很重要,因为本次http-server项目大量依赖于这个库的多线程管理能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/683073.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大型语言模型智能体(LLM Agent)在实际使用的五大问题

在这篇文章中,我将讨论人们在将代理系统投入生产过程中经常遇到的五个主要问题。我将尽量保持框架中立,尽管某些问题在特定框架中更加常见。 1. 可靠性问题 可靠性是所有代理系统面临的最大问题。很多公司对代理系统的复杂任务持谨慎态度,因…

从入门到精通:Java三目运算符详细教程!

哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一…

操作系统教材第6版——个人笔记3

2.1 处理器 2.1.1 处理器与寄存器 处理器部件的简单示意 用户程序可见寄存器 可以使程序员减少访问主存储器的次数,提高指令执行的效率所有程序可使用,包括应用程序和系统程序数据寄存器:又称通用寄存器地址寄存器:索引、栈指针…

表达式求值中的“整型提升”概念

一.基本原理和概念 如:代码 char a,b,c ; a b c ; 该代码在计算的时候就会先将 b 和 c 提升为 int 类型进行加法后,再将数据进行截断存放在内存存放变量 a 的空间中。 (1)提升和截…

【quarkus系列】实战自定义注解实现策略模式分发

目录 序言自定义注解业务接口渠道消息实现策略分发测试知识扩展AnyAnnotationLiteral 应用场景和语法 序言 策略模式大家都应该了解或者使用过,此篇文章中就不再阐述,之前springboot项目中小编也真正的实战应用过。现在换Quarkus框架开发项目&#xff0…

Java面试题:Redis双写一致性问题

Redis双写一致性 缓存和数据库数据同步 正常流程: 读操作: 查询缓存,查询命中直接返回,没命中查询数据库将查询到的数据写入缓存,并设定超时时间 写操作: 删除缓存,修改数据库,在延时一段时间后再删除缓存 (延迟双删)延迟:等待数据库的主节点同步到从节点 因为如果先删…

C++实现,简单的命令行交互框架

目录 背景背景 在实际开发中,经常需要有对端测试程序,配合自己的程序,验证功能、逻辑等。面对繁杂、多变的需求,如果对端程序设计得不够灵活,则无法提升工作效率,如果能够与对端程序交互,通过命令行输入命令的方式完成测试验证,将大大提升工作效率,下面的示例程序是一…

【C语言】一节课拿捏---动态内存分配

谢谢观看!希望以下内容帮助到了你,对你起到作用的话,可以一键三连加关注!你们的支持是我更新地动力。 因作者水平有限,有错误还请指出,多多包涵,谢谢! 目录 一、 为什么要有动态内存…

winscp无法上传,删除,修改文件并提示权限不够的分析

使用winscp删除文件,报了个错如下 根据这个错就去百度,网上大部分都是通过下面这种方法解决: 在winscp端进行设置 输入主机名(即IP地址)、用户名和密码,然后点击高级 在箭头所指位置输入sudo + sftp应用程序的路径 先查询 sudo find / -name sftp-server -print点击Sh…

springboot项目中第三方jar包打包进jar包

springboot项目中,如果手动引入了jar包,打包时不会将手动引入的第三方jar包打包进价包里,如何处理? 若第三方的jar包的lib和src同级,则maven打包时默认不会将lib下的jar包打包进jar包,处理方式有两种&#…

neo4j入门并使用案例说明

1、neo4j是什么 Neo4j是一个高性能的NoSQL图形数据库,它将结构化数据存储在网络(在数学角度称为图)上,而不是传统的表中。Neo4j是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎。它因其高性能、轻量级、易嵌入和…

c++(内存分配,构造,析构)

#include <iostream>using namespace std; class Per { private:string name;int age;double *height;double *weigh; public://无参构造Per(){cout << "Per::无参构造" << endl;}//有参构造Per(string name,int age,double height,double weigh):…

私募状告基金经理,七千月薪被索赔上百万

一个私募机构的基金经理&#xff0c;月薪七千元&#xff0c;但是却被公司诉讼追索100多万元赔偿。 这样“奇葩”的事情&#xff0c;不仅发生在视频网剧里&#xff0c;也发生在现实生活中。 根据日前相披露的一则案件文书&#xff0c;一家江浙一带的私募机构日前把自己的“基金…

docker create rm export exec命令详解

容器生命周期管理命令教程-3 1. 创建容器 docker create&#xff1a;创建一个新的容器但不启动它。 docker create -it --name mycontainer ubuntu bash通常使用 docker run(详细可看上一篇关于run命令的详细介绍) 2. 删除容器 docker rm&#xff1a;删除一个或多个容器。 d…

计算机网络9——无线网络和移动网络1 无线局域网 WLAN2

文章目录 一、802.11局域网的 MAC 层协议1、CSMA/CA协议2、时间间隔 DIFS 的重要性3、争用信道的过程4、对信道进行预约 二、802.11局域网的 MAC 帧1&#xff09;关于 802.11 数据帧的地址2&#xff09;序号控制字段、持续期字段和帧控制字段 一、802.11局域网的 MAC 层协议 1…

Spring boot+vue前后端分离

目录 1、前端vue的搭建 2、后端项目的构建 pom文件中引入的jar包 yml文件用来配置连接数据库和端口的设置 application.property进行一些整合 service层 imp层 mapper 实体类 额外写一个类、解决跨域问题 3、测试 1、前端vue的搭建 建立项目的过程略 开启一个建立好…

探索营销系统业务架构的设计与应用

随着市场竞争的日益激烈和消费者需求的不断变化&#xff0c;营销系统作为企业营销管理的重要组成部分&#xff0c;扮演着至关重要的角色。本文将深入探讨营销系统业务架构的设计与应用&#xff0c;从客户关系管理、营销活动管理、数据分析和智能化服务等方面进行全面解析&#…

Leetcode3168. 候诊室中的最少椅子数

Every day a Leetcode 题目来源&#xff1a;3168. 候诊室中的最少椅子数 解法1&#xff1a;模拟 代码&#xff1a; /** lc appleetcode.cn id3168 langcpp** [3168] 候诊室中的最少椅子数*/// lc codestart class Solution { public:int minimumChairs(string s){int chair…

学习笔记——路由网络基础——浮动静态路由(路由备份和冗余)

2、浮动静态路由(路由备份和冗余) (1)基本概念 浮动静态路由是两条或多条链路组成浮动路由。当到达某一网络有多条路径&#xff0c;通过为静态路由设置不同的优先级&#xff0c;你可以指定主用路径和备用路径。当主用路径不可用时&#xff0c;走备用路径的静态路由进入路由表…

LeakSearch:针对网络公开凭证的安全扫描与检测工具

关于LeakSearch 在红队演戏过程中&#xff0c;往往需要获取到针对目标域的访问权限。在这个过程中&#xff0c;很多红队人员会选择使用暴露在互联网上的代理服务器来实现目标域的访问&#xff0c;那么此时就需要在互联网上收集公开暴露的凭证信息。 对于蓝队来说&#xff0c;…