线性代数|机器学习-P2 A的列向量空间

文章目录

  • 1. Ax矩阵的形式
  • 2. A=CR 矩阵分解
    • 2.1 rank=1 矩阵分解
    • 2.2 rank=2 矩阵分解
    • 2.3 A=CMR,求M
  • 3. Ax 向量

1. Ax矩阵的形式

假设我们有如下矩阵A:
A x = [ 2 1 3 3 1 4 5 7 12 ] [ x 1 x 2 x 3 ] \begin{equation} Ax=\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix} \end{equation} Ax= 2351173412 x1x2x3

  • 从行角度计算如下:
    A x = [ 2 1 3 ] [ x 1 x 2 x 3 ] + [ 3 1 4 ] [ x 1 x 2 x 3 ] + [ 5 7 12 ] [ x 1 x 2 x 3 ] \begin{equation} Ax=\begin{bmatrix} 2&1&3 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix}+\begin{bmatrix} 3&1&4 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix}+\begin{bmatrix} 5&7&12 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix} \end{equation} Ax=[213] x1x2x3 +[314] x1x2x3 +[5712] x1x2x3
    这是我们常规的思路,但是有一个问题,现在是 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3三个变量,可以用三维空间想象画图等,但是当我们有 x 1 , x 2 , x 3 , x 4 , x 5 x_1,x_2,x_3,x_4,x_5 x1,x2,x3,x4,x5的时候,我们就无法想到5维度空间,所以我们在矩阵相乘的过程中用到行向量空间的角度思考是低端的思维思路。所以我们提出了列向量的角度
  • 从列角度计算如下:
    A x = x 1 [ 2 3 5 ] + x 2 [ 1 1 7 ] + x 3 [ 3 4 12 ] \begin{equation} Ax=x_1\begin{bmatrix} 2\\\\ 3\\\\ 5 \end{bmatrix}+x_2\begin{bmatrix} 1\\\\ 1\\\\ 7 \end{bmatrix}+x_3\begin{bmatrix} 3\\\\ 4\\\\ 12 \end{bmatrix} \end{equation} Ax=x1 235 +x2 117 +x3 3412
    v 1 = x 1 [ 2 3 5 ] , v 2 = x 2 [ 1 1 7 ] ; v 3 = x 3 [ 3 4 12 ] ; A x = v 1 + v 2 + v 3 \begin{equation} v_1=x_1\begin{bmatrix} 2\\\\ 3\\\\ 5 \end{bmatrix},v_2=x_2\begin{bmatrix} 1\\\\ 1\\\\ 7 \end{bmatrix};v_3=x_3\begin{bmatrix} 3\\\\ 4\\\\ 12 \end{bmatrix};Ax=v_1+v_2+v_3 \end{equation} v1=x1 235 ,v2=x2 117 ;v3=x3 3412 ;Ax=v1+v2+v3

这样可以看出,对于Ax=b来说,矩阵b就是A的列向量的线性组合,这样及时再加几个列向量,我们可以用向量的形式表示,我们处理起来也非常的方便。通过列乘以行的方式是一种更高级的矩阵理解方式。
在这里插入图片描述

  • 小结:
    所以对于矩阵A和向量x相乘得到的结果Ax可以看做是对于矩阵A的列向量的线性组合后得到的向量,那么这个向量也一定在A的列空间中。假设我们x是随机的,那么我们可以得到矩阵A的整个列空间。

2. A=CR 矩阵分解

2.1 rank=1 矩阵分解

假设我们有矩阵A表示如下,我们希望将矩阵分解成为列向量和行向量的组合。
A = [ 1 3 8 1 3 8 1 3 8 ] \begin{equation} A=\begin{bmatrix} 1&3&8\\\\ 1&3&8\\\\ 1&3&8 \end{bmatrix} \end{equation} A= 111333888

  • 将矩阵A的第一列拿出来。 v 1 = [ 1 1 1 ] v_1=\begin{bmatrix}1\\\\1\\\\1\end{bmatrix} v1= 111
  • 将矩阵A的第二列拿出来,发现与第二列,第三列线性相关,所以停止拿出来,说以只有一列
    ,最终得到如下分解矩阵
    A = [ 1 1 1 ] [ 1 3 8 ] \begin{equation} A=\begin{bmatrix} 1\\\\1\\\\1 \end{bmatrix}\begin{bmatrix} 1&3&8 \end{bmatrix} \end{equation} A= 111 [138]

2.2 rank=2 矩阵分解

我们有如下矩阵A,将矩阵A进行分解,得到A=CR:
A = [ 2 1 3 3 1 4 5 7 12 ] \begin{equation} A=\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix} \end{equation} A= 2351173412

  • 第一步,我们先取矩阵A的第一列, v 1 = [ 2 , 3 , 5 ] T v_1=[2,3,5]^T v1=[2,3,5]T非零,那么就把 v 1 v_1 v1放到列空间中
  • 第二步,我们再取矩阵A的第二列,发现 v 1 T v 2 ≠ 0 v_1^Tv_2\neq0 v1Tv2=0,那么就把 v 2 v_2 v2放到列空间中
  • 第三步,我们再取矩阵A的第三列,发现 v 1 + v 2 = v 3 v_1+v_2=v_3 v1+v2=v3,那么 v 3 v_3 v3就抛弃,这样就形成了列满秩的矩阵C
    C = [ 2 1 3 1 5 7 ] \begin{equation} C=\begin{bmatrix} 2&1\\\\ 3&1\\\\ 5&7 \end{bmatrix} \end{equation} C= 235117
  • 第四步,我们通过矩阵的大小可得矩阵R为2行3列,那么可以发现,矩阵A的第一列为C的第一列,那么可以得到矩阵C的第一列为 c 1 = [ 1 , 0 ] T c_1=[1, 0]^T c1=[1,0]T
  • 第五步,同理可得矩阵A的第二列为矩阵C的第二列,那么 c 2 = [ 0 , 1 ] T c_2=[0, 1]^T c2=[0,1]T
  • 第六步,我们知道矩阵A的第三列为矩阵C的第一列和第二列之和,那么可得 c 3 = [ 1 , 1 ] T c_3=[1, 1]^T c3=[1,1]T
  • 第七步,综上可得方程A=CR表示如下:
    A = C R ⇒ [ 2 1 3 3 1 4 5 7 12 ] = [ 2 1 3 1 5 7 ] [ 1 0 1 0 1 1 ] \begin{equation} A=CR\Rightarrow\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix}=\begin{bmatrix} 2&1\\\\ 3&1\\\\ 5&7 \end{bmatrix}\begin{bmatrix} 1&0&1\\\\ 0&1&1 \end{bmatrix} \end{equation} A=CR 2351173412 = 235117 100111
  • 我们再行分解,可得
    [ 2 1 3 ] = 2 [ 1 0 1 ] + 1 [ 0 1 1 ] \begin{equation} \begin{bmatrix}2&1&3\end{bmatrix}=2\begin{bmatrix}1&0&1\end{bmatrix}+1\begin{bmatrix}0&1&1\end{bmatrix} \end{equation} [213]=2[101]+1[011]
    [ 3 1 4 ] = 3 [ 1 0 1 ] + 1 [ 0 1 1 ] \begin{equation} \begin{bmatrix}3&1&4\end{bmatrix}=3\begin{bmatrix}1&0&1\end{bmatrix}+1\begin{bmatrix}0&1&1\end{bmatrix} \end{equation} [314]=3[101]+1[011]
    [ 5 7 12 ] = 5 [ 1 0 1 ] + 7 [ 0 1 1 ] \begin{equation} \begin{bmatrix}5&7&12\end{bmatrix}=5\begin{bmatrix}1&0&1\end{bmatrix}+7\begin{bmatrix}0&1&1\end{bmatrix} \end{equation} [5712]=5[101]+7[011]
  • 那么可以得到如下:
    [ 2 1 3 3 1 4 ] = [ 2 1 3 1 ] [ 1 0 1 0 1 1 ] ⇒ [ 1 0 1 0 1 1 ] = [ − 1 1 3 − 2 ] [ 2 1 3 3 1 4 ] \begin{equation} \begin{bmatrix} 2&1&3\\\\ 3&1&4 \end{bmatrix}=\begin{bmatrix} 2&1\\\\ 3&1 \end{bmatrix}\begin{bmatrix} 1&0&1\\\\ 0&1&1 \end{bmatrix}\Rightarrow \begin{bmatrix} 1&0&1\\\\ 0&1&1 \end{bmatrix}=\begin{bmatrix} -1&1\\\\ 3&-2 \end{bmatrix}\begin{bmatrix} 2&1&3\\\\ 3&1&4 \end{bmatrix} \end{equation} 231134 = 2311 100111 100111 = 1312 231134
  • 那么A=CR公式可以整理为A=CMR公式
    A = C M R ⇒ [ 2 1 3 3 1 4 5 7 12 ] = [ 2 1 3 1 5 7 ] [ − 1 1 3 − 2 ] [ 2 1 3 3 1 4 ] \begin{equation} A=CMR\Rightarrow\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix}=\begin{bmatrix} 2&1\\\\ 3&1\\\\ 5&7 \end{bmatrix}\begin{bmatrix} -1&1\\\\ 3&-2 \end{bmatrix}\begin{bmatrix} 2&1&3\\\\ 3&1&4 \end{bmatrix} \end{equation} A=CMR 2351173412 = 235117 1312 231134
  • 小结: 这样做的好处是C,M,R均是满秩矩阵,这样我们可以对矩阵A进行进一步分解,真是神奇的思路,解决了SVD奇异值分解中 Σ \Sigma Σ矩阵无法满秩的情况,而且CR均是来自原始矩阵A的列向量(列满秩)和行向量(行满秩)。真是太神奇了。

2.3 A=CMR,求M

当我们知道 A=CMR, 那么如何求快速的求得M呢?
A = C M R → C T A R T = ( C T C ) M ( R R T ) → M = ( C T C ) − 1 ( C T A R T ) ( R R T ) − 1 \begin{equation} A=CMR\rightarrow C^TAR^T=(C^TC)M(RR^T)\rightarrow M=(C^TC)^{-1}(C^TAR^T)(RR^T)^{-1} \end{equation} A=CMRCTART=(CTC)M(RRT)M=(CTC)1(CTART)(RRT)1

3. Ax 向量

假设x是一个随机的列向量,如果我们给了100个随机的x,那么我们可以通过Ax来得到一系列的列向量空间,这个列向量空间也会随着x的增多而和A的列空间相似,这个就是随机采样的思路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/680486.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java 还能不能继续搞了?

金三银四招聘季已落幕,虽说行情不是很乐观,但真正的强者从不抱怨。 在此期间,我收到众多小伙伴的宝贵反馈,整理出132道面试题,从基础到高级,有八股文,也有对某个知识点的深度解析。包括以下几部…

5 种技术,可用于系统中的大数据模型,而不会使系统崩塌

文章目录 一、说明二、第一种:批量大小三、第二种:主动学习四、第三种:增加代币数量五、第四种: 稀疏激活六、第五种:过滤器和更简单的模型后记 一、说明 以下是本文重要观点的摘要。阅读它以获取更多详细信息/获取原…

自动装车系统车辆定位-激光雷达解决方案

在自动装车系统中,激光雷达为车辆定位提供了一种高效且精确的解决方案。以下是关于这一解决方案的详细分析: 一、解决方案概述 激光雷达解决方案在自动装车系统中,通过发射激光束并接收目标反射回来的信号,来探测车辆的位置、状…

新手如何正确使用代理IP,一篇文章学会,包含实战案例

前言 一、代理IP1.1 什么是代理IP?1.2 代理ip分类1.3 代理IP的作用和优势 二、更换代理IP的方法2.1 重启路由器或光猫2.2 用拨号 vps 重拨更换动态IP代理。2.3 使用浏览器更换IP 三、IPIDEA代理的优势四、提取代理IP4.1 提取步骤4.2 浏览器使用代理IP 五、使用代理I…

【Redis数据库百万字详解】数据持久化

文章目录 一、持久化1.1、什么是持久化1.2、持久化方式1.3、RDB优缺点1.4、AOF优缺点 二、RDB持久化触发机制2.1、手动触发2.2、自动触发 三、RDB持久化配置3.1、配置文件3.2、配置查询/设置3.3、禁用持久化3.4、RDB文件恢复 四、RDB持久化案例4.1、手动持久化4.2、自动持久化案…

Hive3.1.2分区与排序(内置函数)

Hive3.1.2分区与排序(内置函数) 1、Hive分区(十分重要!!) 分区的目的:避免全表扫描,加快查询速度! 在大数据中,最常见的一种思想就是分治,我们可以把大的文件切割划分成…

【二进制部署k8s-1.29.4】十三、metrics-server的安装部署

文章目录 简介 一.metrics-server的安装 简介 本章节主要讲解metrics-server的安装,metrics-server主要是用于采集k8s中节点和pod的内存和cpu指标,在观察几点和pod的实时资源使用情况还是比较有用的,如果需要记录历史信息,建议采用…

层出不穷的大模型产品,你怎么选?

一:简介 关于大模型AIGC产品的选择与发展趋势,目前许多互联网公司都在不断投入资源和精力开发基于大规模模型的人工智能产品。这些产品通常能够处理更复杂的任务并提供更高质量的服务,如智能问答、自然语言处理、图像识别等。在产品选择上&am…

Linux下查看进程和端口信息

1, 根据进程名(这里是模糊查询)查看进程信息,以查看nginx进程名为例,查看所对应的进程id为19013(或者使用: ps -aux | grep nginx查看占用内存等信息) ps -ef | grep nginx 2, 根据进程id查看进程占用端口,查看对应端口为8080&…

git clone 文件名中文、有冒号等问题 fatal: repository ‘***/r/鏍″洯鏅烘収椋熷爞/.git/‘ not found

记录一个git问题,比较有意思,也比较难找。 背景 首先把代码拉下来,发现给我报错。 怀疑 刚开始以为是仓库地址变了,但是发现仓库地址并没有变过。 交流 然后寻找解决方案。因为同事也遇到过,同事交了我一招&…

docker-compose教程

1. docker-compose是什么? 1. 1 简介 compose、machine 和 swarm 是docker 原生提供的三大编排工具。 简称docker三剑客。Compose 项目是 Docker 官方的开源项目,定义和运行多个 Docker 容器的应用(Defining and running multi-container Do…

男士内裤一般几个月换一个?男性内裤的选购方法分享!

男士内裤,作为日常穿着的重要衣物,往往被许多男性朋友所忽视。然而,一款合适的内裤不仅能够提升穿着的舒适度,还能在一定程度上维护健康。因此,对男士内裤的选择,我们应当给予足够的重视。 众多男性朋友们…

C++——从C语言快速入门

目录 一、数组 1、声明数组 2、初始化数组 3、访问数组元素 4、示例 5、注意事项 6、数组小练习 计算器支持加减乘除 数组找最大值 二、指针 三、字符串 string 类型 一、数组 在 C 中,数组是一种存储固定大小的相同类型元素的序列。数组的所有元素都存…

半导体人才荒,何解?

过去两年,全球半导体行业陷入寒冬,砍单、裁员、减产、倒闭等各种负面消息接踵而至。 2024年来,在全球半导体产业经历周期性下滑后,逐渐迎来复苏,市场景气向好。据WSTS预测,2024年全球半导体市场将同比增长…

四川古力未来科技抖音小店靠谱之选,购物新体验

在当今数字化浪潮下,抖音小店作为新兴的电商平台,正以其独特的魅力和便捷性,吸引着越来越多的消费者。而四川古力未来科技抖音小店,凭借其优质的产品、完善的服务和良好的口碑,成为了众多消费者的靠谱之选。 四川古力未…

Paraformer解读(1)基于self-attention和dfsmn的encoder

DFSMN SAN-M python实现 import torch import torch.nn as nn import torch.nn.functional as Fclass PositionalEncoding(nn.Module):def __init__(self, d_model, dropout0.1, max_len5000):super(PositionalEncoding, self).__init__()self.dropout nn.Dropout(pdropout)p…

国资国企如何高效实现数据监管报送

为深入贯彻国家关于数字经济与实体经济融合发展的重要指示,结合国资监管信息系统的规范要求,亿信华辰积极响应,助力国企走上数字化转型的道路。应对国资国企监管要求,国资国企监管数据填报平台作为数字化建设的关键环节&#xff0…

【Vue】——前端框架的基本使用

💻博主现有专栏: C51单片机(STC89C516),c语言,c,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux&#xf…

超声波清洗机哪个品牌好用点?四款超卓超声波清洗机疯狂安利!

在这个注重效率与清洁卫生的时代,小型超声波清洗机因其便携性、高效能以及出色的清洁效果,成为了家庭和小型工作室的必备神器。无论是清洗珠宝、眼镜、化妆刷,还是日常的金属餐具和电子产品,小型超声波清洗机都能轻松应对&#xf…

操作失败——后端

控制台观察,页面发送的保存菜品的请求 返回的response显示: ---------- 我开始查看明明感觉都挺正常,没啥错误,就是查不出来。结果后面电脑关机重启后,隔一天看,就突然可以了。我觉着可能是浏览器的缓存没…