Hive3.1.2分区与排序(内置函数)

Hive3.1.2分区与排序(内置函数)

1、Hive分区(十分重要!!)

分区的目的:避免全表扫描,加快查询速度!

在大数据中,最常见的一种思想就是分治,我们可以把大的文件切割划分成一个个的小的文件,这样每次操作一个个小的文件就会很容易了,同样的道理,在hive当中也是支持这种思想的,就是我们可以把大的数据,按照每天或者每小时切分成一个个小的文件,这样去操作小的文件就会容易很多了。

假如现在我们公司一天产生3亿的数据量,那么为了方便管理和查询,就做以下的事情。

​ 1)建立分区(可按照日期,部门等等具体业务分区)

​ 2)分门别类的管理

1.2 静态分区(SP)

静态分区(SP)static partition–partition by (字段 类型)

借助于物理的文件夹分区,实现快速检索的目的。

一般对于查询比较频繁的列设置为分区列。

分区查询的时候直接把对应分区中所有数据放到对应的文件夹中

创建单分区表语法:

注:在将每个分区数据写入到特定文件,使用load data local加载数据将其上传到HDFS上时,会根据其分区来划分为不同的文件夹。当从hive的客户端读取其中数据时,每个分区对应的grade的值会按照HDFS文件夹上Name字段处的分区值进行填入,而不会依据写入文件时的grade的值。
在这里插入图片描述

CREATE TABLE IF NOT EXISTS t_student (
sno int,
sname string
) partitioned by(grade int)
row format delimited fields terminated by ',';
--  分区的字段不要和表的字段相同。相同会报错error10035


1,xiaohu01,1
2,xiaohu02,1
3,xiaohu03,1
4,xiaohu04,1
5,xiaohu05,1
 

6,xiaohu06,2
7,xiaohu07,2
8,xiaohu08,2

9,xiaohu09,3
10,xiaohu10,3
11,xiaohu11,3
12,xiaohu12,3
13,xiaohu13,3
14,xiaohu14,3
15,xiaohu15,3

16,xiaohu16,4
17,xiaohu17,4
18,xiaohu18,4
19,xiaohu19,4
20,xiaohu20,4
21,xiaohu21,4
-- 载入数据
-- 将相应年级一次导入
load data local inpath '/usr/local/soft/bigdata/grade2.txt' into table t_student partition(grade=2);

-- 演示多拷贝一行上传,分区的列的值是分区的值,不是原来的值

静态多分区表语法:

CREATE TABLE IF NOT EXISTS t_teacher (
tno int,
tname string
) partitioned by(grade int,clazz int)
row format delimited fields terminated by ',';

--注意:前后两个分区的关系为父子关系,也就是grade文件夹下面有多个clazz子文件夹。
1,xiaoge01,1,1
2,xiaoge02,1,1

3,xiaoge03,1,2
4,xiaoge04,1,2

5,xiaoge05,1,3
6,xiaoge06,1,3

7,xiaoge07,2,1
8,xiaoge08,2,1

9,xiaoge09,2,2

--载入数据
load data local inpath '/usr/local/soft/bigdata19/hivedata/teacher_1.txt' into table t_teacher partition(grade=1,clazz=1); 	

分区表查询

select * from t_student where grade = 1;

// 全表扫描,不推荐,效率低
select count(*) from students_pt1;

// 使用where条件进行分区裁剪,避免了全表扫描,效率高
select count(*) from students_pt1 where grade = 1;

// 也可以在where条件中使用非等值判断
select count(*) from students_pt1 where grade<3 and grade>=1;

查看分区

show partitions t_teacher;

添加分区

alter table t_student add partition (grade=6);

alter table t_teacher add partition (grade=3,clazz=1) location '/user/hive/warehouse/bigdata29.db/t_teacher/grade=3/clazz=1';

删除分区

alter table t_student drop partition (grade=5);

1.3 动态分区(DP)

  • 动态分区(DP)dynamic partition
  • 静态分区与动态分区的主要区别在于静态分区是手动指定,而动态分区是通过数据来进行判断。
  • 详细来说,静态分区的列是在编译时期通过用户传递来决定的;动态分区只有在SQL执行时才能决定

开启动态分区首先要在hive会话中设置如下的参数

# 表示开启动态分区
hive> set hive.exec.dynamic.partition=true;

# 表示动态分区模式:strict(需要配合静态分区一起使用)、nostrict
# strict: insert into table students_pt partition(dt='anhui',pt) select ......,pt from students;
hive> set hive.exec.dynamic.partition.mode=nonstrict;

===================以下是可选参数======================

# 表示支持的最大的分区数量为1000,可以根据业务自己调整
hive> set hive.exec.max.dynamic.partitions.pernode=1000;

其余的参数详细配置如下

设置为true表示开启动态分区的功能(默认为false--hive.exec.dynamic.partition=true;

设置为nonstrict,表示允许所有分区都是动态的(默认为strict)
-- hive.exec.dynamic.partition.mode=nonstrict; 
-- hive.exec.dynamic.partition.mode=strict; 

每个mapper或reducer可以创建的最大动态分区个数(默认为100) 
比如:源数据中包含了一年的数据,即day字段有365个值,那么该参数就需要设置成大于365,如果使用默认值100,则会报错
--hive.exec.max.dynamic.partition.pernode=100; 

一个动态分区创建可以创建的最大动态分区个数(默认值1000--hive.exec.max.dynamic.partitions=1000;

全局可以创建的最大文件个数(默认值100000--hive.exec.max.created.files=100000; 

当有空分区产生时,是否抛出异常(默认false-- hive.error.on.empty.partition=false;  
  • 案例1: 动态插入学生年级班级信息
--创建外部表
CREATE EXTERNAL TABLE IF NOT EXISTS t_student_e (
sno int,
sname string,
grade int,
clazz int
) 
row format delimited fields terminated by ','
location "/bigdata30/teachers";

--创建分区表
CREATE TABLE IF NOT EXISTS t_student_d (
sno int,
sname string
) partitioned by (grade int,clazz int)
row format delimited fields terminated by ',';


数据:

1,xiaohu01,1,1
2,xiaohu02,1,1
3,xiaohu03,1,1
4,xiaohu04,1,2
5,xiaohu05,1,2
6,xiaohu06,2,3
7,xiaohu07,2,3
8,xiaohu08,2,3
9,xiaohu09,3,3
10,xiaohu10,3,3
11,xiaohu11,3,3
12,xiaohu12,3,4
13,xiaohu13,3,4
14,xiaohu14,3,4
15,xiaohu15,3,4
16,xiaohu16,4,4
17,xiaohu17,4,4
18,xiaohu18,4,5
19,xiaohu19,4,5
20,xiaohu20,4,5
21,xiaohu21,4,5

如果静态分区的话,我们插入数据必须指定分区的值。

如果想要插入多个班级的数据,我要写很多SQL并且执行24次很麻烦。

而且静态分区有可能会产生数据错误问题

-- 会报错 
insert overwrite table t_student_d partition (grade=1,clazz=1) select * from t_student_e where grade=1;

如果使用动态分区,动态分区会根据select的结果自动判断数据应该load到哪儿分区去。

insert overwrite table t_student_d partition (grade,clazz) select * from t_student_e;

优点:不用手动指定了,自动会对数据进行分区

缺点:可能会出现数据倾斜

2、Hive分桶

2.1 业务场景

数据分桶的适用场景:
分区提供了一个隔离数据和优化查询的便利方式,不过并非所有的数据都可形成合理的分区,尤其是需要确定合适大小的分区划分方式
不合理的数据分区划分方式可能导致有的分区数据过多,而某些分区没有什么数据的尴尬情况
分桶是将数据集分解为更容易管理的若干部分的另一种技术。
分桶就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去。(都各不相同)

2.2 数据分桶原理

  • Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
    • bucket num = hash_function(bucketing_column) mod num_buckets ( hash(name)%n == x )
    • 列的值做哈希取余 决定数据应该存储到哪个桶

2.3 数据分桶优势

方便抽样

​ 使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便

提高join查询效率

​ 获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。

2.4 分桶实战

​ 首先,分区和分桶是两个不同的概念,很多资料上说需要先分区在分桶,其实不然,分区是对数据进行划分,而分桶是对文件进行划分。

​ 当我们的分区之后,最后的文件还是很大怎么办,就引入了分桶的概念。

将这个比较大的文件再分成若干个小文件进行存储,我们再去查询的时候,在这个小范围的文件中查询就会快很多。

​ 对于hive中的每一张表、分区都可以进一步的进行分桶。

​ 当然,分桶不是说将文件随机进行切分存储,而是有规律的进行存储。在看完下面的例子后进行解释,现在干巴巴的解释也不太好理解。它是由列的哈希值除以桶的个数来决定每条数据划分在哪个桶中。

创建顺序和分区一样,创建的方式不一样。

# 分区和分桶的区别
1、在HDFS上的效果区别,分区产生的是一个一个子文件夹,分桶产生的是一个一个文件

2、无论是分区还是分桶,在建表的时候都要指定字段,分区使用partitioned by指定分区字段,分桶使用clustered by指定分桶字段

3、partitioned by指定分区字段的时候,字段后面需要加上类型,而且不能在建表小括号中出现。clustered by指定分桶字段的时候,字段已经出现定义过了,只需要指定字段的名字即可

4、分区字段最好选择固定类别的,分桶字段最好选择值各不相同的。

5、分桶不是必须要建立在分区之上,可以不进行分区直接分桶

首先我们需要开启分桶的支持

(依然十分重要,不然无法进行分桶操作!!!!)
set hive.enforce.bucketing=true; 

数据准备(id,name,age)

1,tom,11
2,cat,22
3,dog,33
4,hive,44
5,hbase,55
6,mr,66
7,alice,77
8,scala,88

创建一个普通的表

create table person
(
id int,
name string,
age int
)
row format delimited
fields terminated by ',';

将数据load到这张表中

load data local inpath '/usr/local/soft/bigdata30/person.txt' into table person;

创建分桶表

create table psn_bucket
(
id int,
name string,
age int
)
clustered by(age) into 4 buckets
row format delimited fields terminated by ',';

将数据insert到表psn_bucket中

(注意:这里和分区表插入数据有所区别,分区表需要select 和指定分区,而分桶则不需要)

insert into psn_bucket select * from person;

在HDFS上查看数据

image-20220601223434297

查询数据

我们在linux中使用Hadoop的命令查看一下(与我们猜想的顺序一致)

hadoop fs -cat /user/hive/warehouse/bigdata30_test.db/psn_bucket/*

这里设置的桶的个数是4 数据按照 年龄%4 进行放桶(文件)
11%4 == 3 -----> 000003_0
22%4 == 2 -----> 000002_0
33%4 == 1 -----> 000001_0
44%4 == 0 -----> 000000_0
…以此类推

面试题:分桶和分区的区别?

3、Hive JDBC

启动hiveserver2
nohup hiveserver2 &
或者
hiveserver2 &
新建maven项目并添加两个依赖
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.7.6</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc -->
    <dependency>
        <groupId>org.apache.hive</groupId>
        <artifactId>hive-jdbc</artifactId>
        <version>1.2.1</version>
    </dependency>
编写JDBC代码
import java.sql.*;

public class HiveJDBC {
    public static void main(String[] args) throws ClassNotFoundException, SQLException {
        Class.forName("org.apache.hive.jdbc.HiveDriver");
        Connection conn = DriverManager.getConnection("jdbc:hive2://master:10000/bigdata29");
        Statement stat = conn.createStatement();
        ResultSet rs = stat.executeQuery("select * from students limit 10");
        while (rs.next()) {
            int id = rs.getInt(1);
            String name = rs.getString(2);
            int age = rs.getInt(3);
            String gender = rs.getString(4);
            String clazz = rs.getString(5);
            System.out.println(id + "," + name + "," + age + "," + gender + "," + clazz);
        }
        rs.close();
        stat.close();
        conn.close();
    }
}

4、Hive查询语法(DQL)

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[ORDER BY col_list]
[CLUSTER BY col_list
| [DISTRIBUTE BY col_list] [SORT BY col_list]
]
[LIMIT [offset,] rows]

4.1 全局排序

  • order by 会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时,需要较长的计算时间
  • 使用 order by子句排序 :ASC(ascend)升序(默认)| DESC(descend)降序
  • order by放在select语句的结尾
select * from 表名 order by 字段名1[,别名2...];

4.2 局部排序(对reduce内部做排序)

  • sort by 不是全局排序,其在数据进入reducer前完成排序
  • 如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by 只保证每个reducer的输出有序,不保证全局有序。asc,desc
  • 设置reduce个数
set mapreduce.job.reduces=3;
  • 查看reduce个数
set mapreduce.job.reduces;
  • 排序
select * from 表名 sort by 字段名[,字段名...];

4.3 分区排序(本身没有排序)

distribute by(字段)根据指定的字段将数据分到不同的reducer,且分发算法是hash散列。

类似MR中partition,进行分区,结合sort by使用。(注意:distribute by 要在sort by之前)

对于distrbute by 进行测试,一定要多分配reduce进行处理,否则无法看到distribute by的效果。

设置reduce个数

set mapreduce.job.reduce=7;
  • 排序
select * from 表名 distribute by 字段名[,字段名...] sort by 字段;

4.3 分区并排序

  • cluster by(字段)除了具有Distribute by的功能外,还会对该字段进行排序 asc desc
  • cluster by = distribute by + sort by 只能默认升序,不能使用倒序
select * from 表名 cluster by 字段名[,字段名...];
select * from 表名 distribute by 字段名[,字段名...] sort by 字段名[,字段名...];

5、Hive内置函数

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
-- 1.查看系统自带函数
show functions;
-- 2.显示自带的函数的用法
desc function xxxx;
-- 3.详细显示自带的函数的用法
desc function extended upper;

5.1 内置函数分类

关系操作符:包括 =<><=>=等

算数操作符:包括 +-*、/等

逻辑操作符:包括AND&&OR|| 等

复杂类型构造函数:包括map、struct、create_union等

复杂类型操作符:包括A[n]、Map[key]、S.x

数学操作符:包括ln(double a)、sqrt(double a)等

集合操作符:包括size(Array)、sort_array(Array)等

类型转换函数: binary(string|binary)、cast(expr as )

日期函数:包括from_unixtime(bigint unixtime[, string format])、unix_timestamp()等

条件函数:包括if(boolean testCondition, T valueTrue, T valueFalseOrNull)等

字符串函数:包括acat(string|binary A, string|binary B…)等

其他:xpath、get_json_objectscii(string str)、con

5.2 UDTF hive中特殊的一个功能(进一出多)

-- UDF 进一出一


-- UDAF 进多出一
-- collect_set()和collect_list()都是对多列转成一行,区别就是list里面可重复而set里面是去重的
-- concat_ws(':',collect_set(type))   ':' 表示你合并后用什么分隔,collect_set(stage)表示要合并表中的那一列数据
select 字段名,concat_ws(':',collect_set(列名)) as 别名 from 表名 group by id;

-- UDTF 进一出多
-- explode  可以将一组数组的数据变成一列表
select  explode(split(列名,"数据的分隔符")) from 表名;
-- lateral view 表生成函数,可以将explode的数据生成一个列表
select id,name,列名 from1,lateral view explode(split(1.列名,"数据的分隔符"))新列名 as 别列名;
-- 创建数据库表
create table t_movie1(
id int,
name string,
types string
)
row format delimited fields terminated by ','
lines terminated by '\n';

-- 电影数据  movie1.txt
-- 加载数据到数据库 load data inpath '/shujia/movie1.txt' into table t_movie1;
1,这个杀手不太冷,剧情-动作-犯罪
2,七武士,动作-冒险-剧情
3,勇敢的心,动作-传记-剧情-历史-战争
4,东邪西毒,剧情-动作-爱情-武侠-古装
5,霍比特人,动作-奇幻-冒险

-- explode  可以将一组数组的数据变成一列表
select  explode(split(types,"-")) from t_movie1;

-- lateral view 表生成函数,可以将explode的数据生成一个列表
select id,name,type from t_movie1 lateral view explode(split(types,"-")) typetable as type;
-- 创建数据库表
create table t_movie2(
id int,
name string,
type string
)
row format delimited fields terminated by ','
lines terminated by '\n';

-- 电影数据 movie2.txt
-- 加载数据到数据库 load data inpath '/shujia/movie2.txt' into table t_movie2;
1,这个杀手不太冷,剧情
1,这个杀手不太冷,动作
1,这个杀手不太冷,犯罪
2,七武士,动作
2,七武士,冒险
2,七武士,剧情
3,勇敢的心,动作
3,勇敢的心,传记
3,勇敢的心,剧情
3,勇敢的心,历史
3,勇敢的心,战争
4,东邪西毒,剧情
4,东邪西毒,动作
4,东邪西毒,爱情
4,东邪西毒,武侠
4,东邪西毒,古装
5,霍比特人,动作
5,霍比特人,奇幻
5,霍比特人,冒险

-- collect_set()和collect_list()都是对列转成行,区别就是list里面可重复而set里面是去重的
-- concat_ws(':',collect_set(type))   ':' 表示你合并后用什么分隔,collect_set(stage)表示要合并表中的那一列数据
select id,concat_ws(':',collect_set(type)) as types from t_movie2 group by id;

5.3 WordCount案例

数据准备

hello,world
hello,bigdata
like,life
bigdata,good

建表

create table wc2
(
line string
)
row format delimited fields terminated by '\n'

导入数据

load data local inpath '/usr/local/soft/data/wc1.txt' into table wc;

步骤1:先对一行数据进行切分

select split(line,',') from wc;

步骤2:将行转列

select explode(split(line,',')) from wc; 

步骤3:将相同的进行分组统计

select w.word,count(*) from (select explode(split(line,',')) as word from wc) w group by w.word;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/680473.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【二进制部署k8s-1.29.4】十三、metrics-server的安装部署

文章目录 简介 一.metrics-server的安装 简介 本章节主要讲解metrics-server的安装&#xff0c;metrics-server主要是用于采集k8s中节点和pod的内存和cpu指标&#xff0c;在观察几点和pod的实时资源使用情况还是比较有用的&#xff0c;如果需要记录历史信息&#xff0c;建议采用…

层出不穷的大模型产品,你怎么选?

一&#xff1a;简介 关于大模型AIGC产品的选择与发展趋势&#xff0c;目前许多互联网公司都在不断投入资源和精力开发基于大规模模型的人工智能产品。这些产品通常能够处理更复杂的任务并提供更高质量的服务&#xff0c;如智能问答、自然语言处理、图像识别等。在产品选择上&am…

Linux下查看进程和端口信息

1, 根据进程名(这里是模糊查询)查看进程信息&#xff0c;以查看nginx进程名为例&#xff0c;查看所对应的进程id为19013(或者使用&#xff1a; ps -aux | grep nginx查看占用内存等信息) ps -ef | grep nginx 2, 根据进程id查看进程占用端口&#xff0c;查看对应端口为8080&…

git clone 文件名中文、有冒号等问题 fatal: repository ‘***/r/鏍″洯鏅烘収椋熷爞/.git/‘ not found

记录一个git问题&#xff0c;比较有意思&#xff0c;也比较难找。 背景 首先把代码拉下来&#xff0c;发现给我报错。 怀疑 刚开始以为是仓库地址变了&#xff0c;但是发现仓库地址并没有变过。 交流 然后寻找解决方案。因为同事也遇到过&#xff0c;同事交了我一招&…

docker-compose教程

1. docker-compose是什么&#xff1f; 1. 1 简介 compose、machine 和 swarm 是docker 原生提供的三大编排工具。 简称docker三剑客。Compose 项目是 Docker 官方的开源项目&#xff0c;定义和运行多个 Docker 容器的应用&#xff08;Defining and running multi-container Do…

男士内裤一般几个月换一个?男性内裤的选购方法分享!

男士内裤&#xff0c;作为日常穿着的重要衣物&#xff0c;往往被许多男性朋友所忽视。然而&#xff0c;一款合适的内裤不仅能够提升穿着的舒适度&#xff0c;还能在一定程度上维护健康。因此&#xff0c;对男士内裤的选择&#xff0c;我们应当给予足够的重视。 众多男性朋友们…

C++——从C语言快速入门

目录 一、数组 1、声明数组 2、初始化数组 3、访问数组元素 4、示例 5、注意事项 6、数组小练习 计算器支持加减乘除 数组找最大值 二、指针 三、字符串 string 类型 一、数组 在 C 中&#xff0c;数组是一种存储固定大小的相同类型元素的序列。数组的所有元素都存…

半导体人才荒,何解?

过去两年&#xff0c;全球半导体行业陷入寒冬&#xff0c;砍单、裁员、减产、倒闭等各种负面消息接踵而至。 2024年来&#xff0c;在全球半导体产业经历周期性下滑后&#xff0c;逐渐迎来复苏&#xff0c;市场景气向好。据WSTS预测&#xff0c;2024年全球半导体市场将同比增长…

四川古力未来科技抖音小店靠谱之选,购物新体验

在当今数字化浪潮下&#xff0c;抖音小店作为新兴的电商平台&#xff0c;正以其独特的魅力和便捷性&#xff0c;吸引着越来越多的消费者。而四川古力未来科技抖音小店&#xff0c;凭借其优质的产品、完善的服务和良好的口碑&#xff0c;成为了众多消费者的靠谱之选。 四川古力未…

Paraformer解读(1)基于self-attention和dfsmn的encoder

DFSMN SAN-M python实现 import torch import torch.nn as nn import torch.nn.functional as Fclass PositionalEncoding(nn.Module):def __init__(self, d_model, dropout0.1, max_len5000):super(PositionalEncoding, self).__init__()self.dropout nn.Dropout(pdropout)p…

国资国企如何高效实现数据监管报送

为深入贯彻国家关于数字经济与实体经济融合发展的重要指示&#xff0c;结合国资监管信息系统的规范要求&#xff0c;亿信华辰积极响应&#xff0c;助力国企走上数字化转型的道路。应对国资国企监管要求&#xff0c;国资国企监管数据填报平台作为数字化建设的关键环节&#xff0…

【Vue】——前端框架的基本使用

&#x1f4bb;博主现有专栏&#xff1a; C51单片机&#xff08;STC89C516&#xff09;&#xff0c;c语言&#xff0c;c&#xff0c;离散数学&#xff0c;算法设计与分析&#xff0c;数据结构&#xff0c;Python&#xff0c;Java基础&#xff0c;MySQL&#xff0c;linux&#xf…

超声波清洗机哪个品牌好用点?四款超卓超声波清洗机疯狂安利!

在这个注重效率与清洁卫生的时代&#xff0c;小型超声波清洗机因其便携性、高效能以及出色的清洁效果&#xff0c;成为了家庭和小型工作室的必备神器。无论是清洗珠宝、眼镜、化妆刷&#xff0c;还是日常的金属餐具和电子产品&#xff0c;小型超声波清洗机都能轻松应对&#xf…

操作失败——后端

控制台观察&#xff0c;页面发送的保存菜品的请求 返回的response显示&#xff1a; ---------- 我开始查看明明感觉都挺正常&#xff0c;没啥错误&#xff0c;就是查不出来。结果后面电脑关机重启后&#xff0c;隔一天看&#xff0c;就突然可以了。我觉着可能是浏览器的缓存没…

C# 声音强度图绘制

C# 声音强度图绘制 采集PCM音频数据 音频原来自麦克风 音频源来自录音文件 处理PCM音频数据 将PCM数据进行强度值换算 private void UpdateVoice(double[] audio){// 计算RMS值double rms Math.Sqrt(audio.Select(x > x * x).Average());// 将RMS值转换为分贝值&#x…

常用的接口测试工具

大家好&#xff0c;当谈到软件开发中的质量保证时&#xff0c;接口测试无疑是至关重要的一环。在当今快节奏的开发环境中&#xff0c;确保应用程序的各个组件之间的交互正常运作是至关重要的。而接口测试工具则成为了开发人员和测试人员的得力助手&#xff0c;帮助他们有效地测…

Java版电商平台B2B2C:多商家直播商城系统特性解析

B2B2C平台&#xff0c;立足于传统电商领域&#xff0c;同时引入了创新的商业模式。该平台不仅支持商家入驻和平台自营&#xff0c;还积极构建了一个全新的市场环境&#xff0c;旨在为各行各业及互联网创业者提供更多收益机会。 该平台以消费者需求为中心&#xff0c;帮助企业构…

什么是人机协同翻译

什么是人机协同翻译 序什么是人机协同翻译账号绑定服务开通文档翻译图片翻译体验感受及建议 序 什么是人机协同翻译&#xff0c;为什么会需要人机协同翻译&#xff0c;以及人机协同翻译的效果&#xff0c;应用场景等&#xff0c;本文将关于这些内容一一解答。 什么是人机协同…

全平台自定义小程序源码系统 一个后台控制7端 自主设计属于你的小程序 前后端带完整的安装代码包以及搭建教程

系统概述 在当今数字化时代&#xff0c;小程序以其轻量级、跨平台、即用即走的特点&#xff0c;成为企业、个人及开发者们追捧的热门工具。为了满足不同用户的需求&#xff0c;小编给大家分享一款全平台自定义小程序源码系统。该系统通过一套强大的后台管理系统&#xff0c;实…

SD NAND的垃圾回收机制:无人机数据管理的隐形守护者

随着科技的飞速发展&#xff0c;无人机在各个领域的应用越来越广泛&#xff0c;从航拍到物流配送&#xff0c;再到农业监测&#xff0c;无人机正逐渐成为我们生活中不可或缺的一部分。而SD NAND作为一种创新的存储芯片&#xff0c;可以直接贴片使用&#xff0c;具有小尺寸、高可…