深度学习Week15——利用TensorFlow实现猫狗识别2

文章目录
深度学习Week15——利用TensorFlow实现猫狗识别2—数据增强
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
四、数据预处理
1、加载数据
2、可视化数据
3、检查数据
4、配置数据集
五、构建VGG-16模型
1、设置动态学习率
2、早停与保存最佳模型参数
五、编译模型
六、训练模型
七、预测与评估
1、Accuracy图
2、指定图像预测
八、数据增强

一、前言

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

本篇内容分为两个部分,前面部分是学习K同学给的算法知识点以及复现,后半部分是自己的拓展与未解决的问题

本期学习内容较少,代码与上周类似,主要是理解了上周未解决的小bug,并尝试通过上下翻转使数据增强,下周系统学习数据增强函数并自己实现一个增强函数

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.0
  • 编译器:Pycharm2023.2.3
    深度学习环境:TensorFlow
    显卡及显存:RTX 3060 8G

三、前期工作

1、导入库并配置环境

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus) 

输出:

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)

2、 导入数据

导入所有猫狗图片数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),数据集来源于K同学啊

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL,pathlib

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "/home/mw/input/dogcat3675/365-7-data"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

#查看第一张图片:

在这里插入图片描述

图片总数为: 3400

四、数据预处理

1、加载数据

batch_size = 64
img_height = 224
img_width  = 224

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

tf.keras.preprocessing.image_dataset_from_directory()会将文件夹中的数据加载到tf.data.Dataset中,且加载的同时会打乱数据。

  • class_names
  • validation_split: 0和1之间的可选浮点数,可保留一部分数据用于验证。
  • subset: training或validation之一。仅在设置validation_split时使用。
  • seed: 用于shuffle和转换的可选随机种子。
  • batch_size: 数据批次的大小。默认值:32
  • image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出:

Found 3400 files belonging to 2 classes.
Using 2720 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出:

Found 3400 files belonging to 2 classes.
Using 680 files for validation.


我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

[‘cat’, ‘dog’]

2、再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

(64, 224, 224, 3)
(64,)
Image_batch是形状的张量(64,224,224,3)。这是一批形状224x224x3的64张图片(最后一维指的是彩色通道RGB。
Label_batch是形状(64,)的张量,这些标签对应64张图片

3、配置数据集

  • shuffle():打乱数据
  • prefetch():预取数据,加速运行
  • cache():将数据集缓存到内存当中,加速运行

如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
使用前
使用prefetch()可显著减少空闲时间:
在这里插入图片描述

AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

4. 数据可视化

plt.figure(figsize=(12, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

五 、构建VGG-16模型

  1. 输入层:
    输入层负责接收原始数据,将数据传递到网络中的第一层。
  2. 卷积层:
    卷积层使用卷积核对输入数据进行滤波操作,以提取图像中的特征。
  3. 池化层:
    池化层用于对卷积层的输出进行下采样,以减少数据的维度和计算量。
  4. 全连接层:
    全连接层起到“特征提取器”的作用,将前面层的特征表示映射到输出层。
  5. 输出层:
    输出层负责输出模型的预测结果。

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16
在这里插入图片描述
在这里插入图片描述

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________

自己构建VGG-16模型

首先,导入了必要的模块:layers, models, tensorflow.keras库的模块,用于构建神经网络模型。

其次,定义函数VGG16(nb_classes, input_shape),接受两个参数:类别:nb_classes和形状 input_shape 表示输入数据的形状。
通过Input函数创建了一个输入张量input_tensor,形状为input_shape按照VGG16的结构,定义卷积层和池化层:
使用 ReLU 作为激活函数,让卷积层分布在不同的block中,每个block中有若干个卷积层,每个block之间有一个池化层。每个卷积层后面跟着一个池化层,通过MaxPooling2D函数实现。
在所有卷积和池化层之后,添加了全连接层:
通过Flatten层将卷积层输出的特征图展平成一维向量。
然后通过两个Dense层定义包含4096个神经元的全连接层,每个层包含4096个神经元,并使用 ReLU 作为激活函数。

六、编译模型

具体函数解释参考第八周博客或者K同学啊的博客!

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

七、训练模型

from tqdm import tqdm
import tensorflow.keras.backend as K

epochs = 10
lr     = 1e-4

# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []

for epoch in range(epochs):
    train_total = len(train_ds)
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)

        for image,label in train_ds:   
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
            """
            history = model.train_on_batch(image,label)

            train_loss     = history[0]
            train_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%train_loss,
                              "accuracy":"%.4f"%train_accuracy,
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
        history_train_loss.append(train_loss)
        history_train_accuracy.append(train_accuracy)
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:

        for image,label in val_ds:      
            
            history = model.test_on_batch(image,label)
            
            val_loss     = history[0]
            val_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%val_loss,
                              "accuracy":"%.4f"%val_accuracy})
            pbar.update(1)
        history_val_loss.append(val_loss)
        history_val_accuracy.append(val_accuracy)
            
    print('结束验证!')
    print("验证loss为:%.4f"%val_loss)
    print("验证准确率为:%.4f"%val_accuracy)

七、预测

1、Accuracy图与Loss图

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

结果:
在这里插入图片描述

2. 指定数据预测

import numpy as np

# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy())
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")

在这里插入图片描述

八、数据增强

我们使用tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像来增强数据,来生成大量的不同但相关的图像。这些变换使模型在训练过程中能够看到更多的变化,从而增强其对不同情况下的泛化能力,同时可以学习到更为普遍的特征,从而降低过拟合的风险

data_augmentation = tf.keras.Sequential(tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"))

# Add the image to a batch.
image = tf.expand_dims(images[i], 0)

plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = data_augmentation(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0])
    plt.axis("off")

在这里插入图片描述

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds
    
train_ds = prepare(train_ds)

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)
Epoch 1/20
43/43 [==============================] - 18s 103ms/step - loss: 1.2824 - accuracy: 0.5495 - val_loss: 0.4272 - val_accuracy: 0.8941
Epoch 2/20
43/43 [==============================] - 3s 55ms/step - loss: 0.3326 - accuracy: 0.8815 - val_loss: 0.1882 - val_accuracy: 0.9309
Epoch 3/20
43/43 [==============================] - 3s 54ms/step - loss: 0.1614 - accuracy: 0.9488 - val_loss: 0.1493 - val_accuracy: 0.9412
Epoch 4/20
43/43 [==============================] - 2s 54ms/step - loss: 0.1215 - accuracy: 0.9557 - val_loss: 0.0950 - val_accuracy: 0.9721
Epoch 5/20
43/43 [==============================] - 3s 54ms/step - loss: 0.0906 - accuracy: 0.9666 - val_loss: 0.0791 - val_accuracy: 0.9691
Epoch 6/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0614 - accuracy: 0.9768 - val_loss: 0.1131 - val_accuracy: 0.9559
Epoch 7/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0603 - accuracy: 0.9807 - val_loss: 0.0692 - val_accuracy: 0.9794
Epoch 8/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0577 - accuracy: 0.9793 - val_loss: 0.0609 - val_accuracy: 0.9779
Epoch 9/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0511 - accuracy: 0.9825 - val_loss: 0.0546 - val_accuracy: 0.9779
Epoch 10/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0462 - accuracy: 0.9871 - val_loss: 0.0628 - val_accuracy: 0.9765
Epoch 11/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0327 - accuracy: 0.9895 - val_loss: 0.0790 - val_accuracy: 0.9721
Epoch 12/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0242 - accuracy: 0.9938 - val_loss: 0.0580 - val_accuracy: 0.9794
Epoch 13/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0354 - accuracy: 0.9907 - val_loss: 0.0797 - val_accuracy: 0.9735
Epoch 14/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0276 - accuracy: 0.9900 - val_loss: 0.0810 - val_accuracy: 0.9691
Epoch 15/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0243 - accuracy: 0.9931 - val_loss: 0.1063 - val_accuracy: 0.9676
Epoch 16/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0253 - accuracy: 0.9914 - val_loss: 0.1142 - val_accuracy: 0.9721
Epoch 17/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0205 - accuracy: 0.9937 - val_loss: 0.0726 - val_accuracy: 0.9706
Epoch 18/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0154 - accuracy: 0.9948 - val_loss: 0.0741 - val_accuracy: 0.9765
Epoch 19/20
43/43 [==============================] - 3s 56ms/step - loss: 0.0155 - accuracy: 0.9966 - val_loss: 0.0870 - val_accuracy: 0.9721
Epoch 20/20
43/43 [==============================] - 3s 55ms/step - loss: 0.0259 - accuracy: 0.9907 - val_loss: 0.1194 - val_accuracy: 0.9721
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)
2/2 [==============================] - 0s 15ms/step - loss: 0.0521 - accuracy: 1.0000
Accuracy 1.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/678401.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1-力扣高频 SQL 50 题(基础版)

1.可回收且低脂的产品(基础版) -- 条件 既是低脂又是可回收 where low_fats"Y" AND recyclable"Y" -- 查询属性 产品编号 select product_id select product_id from Products where low_fats"Y" AND recyclable"…

MicroPython教程:ESP8266 快速参考

ESP8266 快速参考 Adafruit Feather HUZZAH 板(图片来源:Adafruit)。 以下是基于 ESP8266 的开发板的快速参考。如果这是您第一次使用该板,请考虑先阅读以下部分: 关于 ESP8266 端口的一般信息ESP8266 的 MicroPytho…

Unity Obi Rope失效

文章目录 前言一、WebGL端Obi Rope失效二、Obi Rope 固定不牢三、使用Obi后卡顿总结 前言 Obi 是一款基于粒子的高级物理引擎,可模拟各种可变形材料的行为。 使用 Obi Rope,你可以在几秒内创建绳索和杆子,同时完全控制它们的形状和行为&…

【DMG80480T070_05WTR】文本显示、数据变量显示、基本图形显示、实时曲线功能及串口下载流程(串口屏)

这篇文章写给自己看的,要不然明天就忘完了。 首先新建一个工程,名称路径自拟。 导入一张图片,名字从00开始,图片放到本工程的DWIN_SET下面就行,后面如果没有特殊说明,生成的配置或者放入的图片全都放在该文…

常见排序算法之归并排序

目录 一、什么是归并排序 二、递归实现 2.1 思路 2.2 C语言源码 三、非递归实现 3.1 思路 3.2 C语言源码 一、什么是归并排序 归并排序是一种基于分治思想的排序算法。它的基本思想是将原始的待排序序列不断地分割成更小的子序列,直到每个子序列中只有一个元…

白酒:不同产地白酒的口感差异与品鉴技巧

云仓酒庄豪迈白酒作为中国白酒的品牌之一,其口感和品质深受消费者喜爱。然而,不同产地的白酒在口感上存在一定的差异,了解这些差异以及掌握正确的品鉴技巧,对于更好地品味云仓酒庄豪迈白酒以及其他不同产地的白酒至关重要。 首先&…

计网期末复习指南(四):网络层(IP协议、IPv4、IPv6、CIDR、ARP、ICMP)

前言:本系列文章旨在通过TCP/IP协议簇自下而上的梳理大致的知识点,从计算机网络体系结构出发到应用层,每一个协议层通过一篇文章进行总结,本系列正在持续更新中... 计网期末复习指南(一):计算…

使用新的 NVIDIA Isaac Foundation 模型和工作流程创建、设计和部署机器人应用程序

使用新的 NVIDIA Isaac Foundation 模型和工作流程创建、设计和部署机器人应用程序 机器人技术的应用正在智能制造设施、商业厨房、医院、仓库物流和农业领域等各种环境中迅速扩展。该行业正在转向智能自动化,这需要增强机器人功能,以执行感知、绘图、导…

【人工智能】第四部分:ChatGPT的技术实现

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第35课-3D互动教材

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第35课-3D互动教材 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎&am…

关于科技的总结与思考

文章目录 互联网时代有趣的数字数据驱动大数据的两个特性数据保护互联网免费模式的再探讨平台互联网的意义人工智能伦理的思考语言理性人梅特卡夫定律冲浪的神奇之处AR的恐怖之处叙词表、受控词表和大众分类法六度/十九度的解读知识图谱是真正的仿生智能幂次法则和优先连接现代…

怎么把图片压缩小一点?让你的图片秒变小清新!

怎么把图片压缩小一点?在数字化时代,图片已经成为我们生活中不可或缺的一部分。无论是社交媒体的分享,还是工作文档的编辑,图片都扮演着重要的角色。然而,随着图片数量的增加,存储空间的问题也日益凸显。幸…

AI烟火识别算法在消防安全与火灾预警系统中的应用与价值

在信息化和智能化的今天,烟火识别算法作为一种重要的技术工具,在火灾预防和处理中发挥着关键作用。其工作原理主要基于深度学习和图像处理技术,能够实时分析监控画面,准确检测出图像中的烟火,并发出预警。 一、烟火识…

优思学院|为什么精益生产总是搞不成功?CLMP

先说一个故事 有一位老板希望模仿乔布斯,怎么模仿呢? 他穿起黑色高领毛衣,李维斯蓝色牛仔裤和New Balance运动鞋。 不过,企业之后也没有和苹果一样好,老板们觉得很奇怪啊,是不是哪里有问题,乔…

vscode专区

1.展示多行的文件导航标签,而非只有1行 1.1打开设置 1.2搜索该设置"workbench.editor.wrap.tabs",并勾选 1.3效果对比

MySQL(四) - SQL优化

一、SQL执行流程 MySQL是客户端-服务器的模式。一条SQL的执行流程如下: 在执行过程中,主要有三类角色:客户端、服务器、存储引擎。 大致可以分为三层: 第一层:客户端连接到服务器,构造SQL并发送给服务器…

vue3 实现自定义指令封装 --- 通俗易懂

1、局部自定义指令 1.1 在<script setup>定义组件内的指令&#xff0c;任何以v开头的驼峰式命名的变量都可以被用作一个自定义指令 <template><div><h3>使用自定义指令</h3><div>########################## start 局部自定义指令</d…

MFC实现子控件focus焦点上下移动父控件ListView和Gridview也跟着向上下移动

项目中要实现mfc功能&#xff0c;然后子控件焦点下移&#xff0c;LIstView和Gridview父控件不会下移&#xff0c;所以就有这个文章。废话不多说直接上代码。 MFCGridView.java import android.content.Context; import android.util.AttributeSet; import android.view.View;…

TiKV学习5:TiDB SQL执行流程

目录 1. DML语句读流程概要 2. DML语句写流程概要 3. DDL 流程概要 4. SQL的Parse和Compile 5. 读取的执行 6. 写入的执行 7. DDL的执行 8. 小结 1. DML语句读流程概要 TiDB Server接收sql并处理&#xff0c;TiKV负责持久化数据&#xff0c;PD提供TSO和Region的数据字典…

error /var/lib/jenkins/workspace/*/node_modules/node-sass: Command failed.

原因&#xff1a;node-sass版本不一致 版本图&#xff1a; 解决方案&#xff1a; 进入到jenkins项目目录下&#xff0c;修改package.json文件 将7.0.1改成6.0.1版本