1.基本概念
1.Index索引
动词:相当于MySQL中的insert;
名词:相当于MySQL中的DataBase;
2.Type(类型)
在Index(索引)中,可以定义一个或多个类型
类似于MySQL中的Table;每一种类型的数据放在一起
3.Document(文档)
保存在某个索引(index)下,某种类型(Type) 的一个数据(Document),文档是JSON格式的,Document就像是MySQL 中的某个Table里面的内容 类似一行数据
4.倒排索引
2.Docker 安装ElasticSearch
2.1 拉取镜像
docker pull elasticsearch:7.4.2
docker pull kibana:7.4.2
2.2 创建实例
2.2.1 创建挂载目录
mkdir ./config
mkdir ./data
记得授予权限
chmod -R 777 ./elasticsearch
2.2.2 使容器外任何地址都能够访问 elasticsearch
echo "http.host: 0.0.0.0">>./config/elasticsearch.yml
elasticsearch.yml
http.host: 0.0.0.0
2.2.3 docker 启动
docker run --name elasticsearch -p 9200:9200 -p9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms512m -Xmx1024m" \
-v ./config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v ./data:/usr/share/elasticsearch/data \
-v ./plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2
2.3 安装Kibana
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.232.209:9200 -p 5601:5601 \
-d kibana:7.4.2
3.初步检索
3.1 _cat
查看节点信息
http://192.168.232.209:9200/_cat/nodes
查看elasticsearch的健康状态
http://192.168.232.209:9200/_cat/health
查看elasticsearch的主节点信息
http://192.168.232.209:9200/_cat/master
查看所有索引
http://192.168.232.209:9200/_cat/indices
3.2 索引一个文档(保存或修改一条记录)
保存一个数据,保存在那个索引的哪个类型下,指定用哪个唯一标识
http://192.168.232.209:9200/customer/external/1
3.3 查询文档
http://192.168.232.209:9200/customer/external/1
3.4 更新文档
3.4.1 _update
这个操作如果修改文档的值和原来一样,则不会更新版本。
3.4.2
3.5 删除文档
3.6 bulk 批量 API
批量操作
从这个网站复制
https://gitee.com/xlh_blog/common_content/blob/master/es%E6%B5%8B%E8%AF%95%E6%95%B0%E6%8D%AE.json#
执行 /_bluk
4.进阶检索
1.searchAPI
ES支持两种基本方式检索:
- 一个是通过使用REST request URI 发送搜索参数(uri + 检索参数)
- 另一个是通过使用REST request body 来发送它们 (uri + 请求体)
GET /bank/_search?q=*&sort=account_number:asc
q=* 查询所有
sort 跟据 account_number 升序
2.QueryDSL
GET /bank/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"account_number": "asc"
},
{
"balance": "desc"
}
]
}
3.部分检索
GET /bank/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"account_number": "desc"
},
{
"balance": "desc"
}
],
"from": 0,
"size": 20,
"_source": ["balance","account_number"]
}
4. match[匹配查询]
GET /bank/_search
{
"query": {
"match": {
"account_number": 20
}
}
}
GET /bank/_search
{
"query": {
"match": {
"address": "mill lane"
}
}
}
全文检索按照评分进行排序
5.match_phrase [短语匹配]
将需要匹配的值当成一个整体单词(不分词)进行检索
GET /bank/_search
{
"query": {
"match_phrase": {
"address": "mill lane"
}
}
}
6.multi_match [多字段匹配]
这是或,只要一个字段满足,就返回
GET /bank/_search
{
"query": {
"multi_match": {
"query": "mill",
"fields": ["state","address"]
}
}
}
能够正常分词
GET /bank/_search
{
"query": {
"multi_match": {
"query": "mill Movico",
"fields": ["city","address"]
}
}
}
7.bool复杂查询
bool用来做复杂查询:
复合语句可以合并 任何 其他查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以相互嵌套,可以表达非常复杂的逻辑。
must: 必须达到must列举所有条件 也就是相当于 AND
must_not: 且不满足里面的条件
should: 不是or 就是匹配上面有加分项
GET /bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"gender": "m"
}
},
{
"match": {
"address": "Mill"
}
}
],
"must_not": [
{
"match": {
"age": 28
}
}
],
"should": [
{
"match": {
"lastname": "v"
}
}
]
}
}
}
8.filter [结果过滤]
并不是所有的查询都需要产生分数,特别是那些仅用于 "filtering" (过滤) 的文档。为了不计算分数Elasticsearch 会自动检查场景并且优化查询的执行。
GET /bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"gender": "m"
}
},
{
"match": {
"address": "Mill"
}
}
],
"must_not": [
{
"match": {
"age": 18
}
}
],
"should": [
{
"match": {
"lastname": "Wallace"
}
}
],
"filter": {
"range": {
"age": {
"gte": 18,
"lte": 20
}
}
}
}
}
}
9.term
和match一样。匹配某个属性的值。全文检索字段用match,其他非text 字段匹配用term
不用全文检索的时候用term 比如数字 年龄
GET /bank/_search
{
"query": {
"term": {
"age": {
"value": "28"
}
}
}
}
GET /bank/_search
{
"query": {
"match": {
"email.keyword": "margueritewall@aquoavo.com"
}
}
}
address.keyword 和 match_phrase 区别:
前者 就是精确匹配 ,后者包含这个短语 就行
非文本字段 用 term
文本字段用 match
10. aggregations (执行聚合)
聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于 SQL GROUP BY 和 SQL 的聚合函数 。在Elasticsearch 中, 您有执行搜索返回 hits (命中结果) ,并且同时返回聚合结果,把一个响应中的所有hits (命中结果) 分隔开的能力 。 这是非常强大且有效,您可以执行查询和多个聚合,并且在一次使用中得到各自 的(任何一个的) 返回结果,使用一次简化和简化的API 来避免网络往返。
搜索 address 中包含mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET /bank/_search
{
"query": {
"match": {
"address": "mill"
}
},
"aggs": {
"ageAgg": {
"terms": {
"field": "age",
"size": 10
}
},
"ageAvg":{
"avg": {
"field": "age"
}
},
"blanceAvg":{
"avg": {
"field": "balance"
}
}
},
"size": 0
}
复杂:
按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
##按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
GET /bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"aggAgg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"aggAvg": {
"avg": {
"field": "balance"
}
}
}
}
}
}
复杂2:
查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资.
##查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资
GET /bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"aggAggs": {
"terms": {
"field": "age",
"size": 100
}
,
"aggs": {
"avgBalanceAll":{
"avg": {
"field": "balance"
}
}
,
"genderAgg": {
"terms": {
"field": "gender.keyword",
"size": 2
},
"aggs": {
"avgBlance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
}
}
11.mapping(映射)
所有数据类型
创建一个有类型定义的索引
PUT /my_index
{
"mappings": {
"properties": {
"age":{"type": "integer" },
"email":{"type": "keyword"},
"name":{"type": "text"}
}
}
}
添加映射字段
PUT /my_index/_mapping
{
"properties": {
"employee-id":{
"type":"keyword",
"index":false
}
}
}
index =false 代表不参与索引,是搜索不到他的,相当于冗余存储字段,通过其他字段查出来
迁移数据
创建新索引
PUT /newbank
{
"mappings": {
"properties": {
"account_number": {
"type": "long"
},
"address": {
"type": "text"
},
"age": {
"type": "integer"
},
"balance": {
"type": "long"
},
"city": {
"type": "keyword"
},
"email": {
"type": "keyword"
},
"employer": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"firstname": {
"type": "text"
},
"gender": {
"type": "keyword"
},
"lastname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"state": {
"type": "keyword"
}
}
}
}
上面是6.0以后不用类型保存的迁移方法
下面是6.0之前
POST _reindex
{
"source": {
"index": "bank",
"type": "account"
},
"dest": {
"index": "newbank"
}
}
5.分词
POST _analyze
{
"analyzer": "standard",
"text": "The 2 QUICK Brown_Foxes jumped over the lazy dog's bone."
}
1.安装ik分词器
注意:不能用默认elastics-plugin install xx.zip 进行自动安装
进入这个网址下
Index of: analysis-ik/stable/ (infinilabs.com)
进入es 容器·内部 plugins 目录
docker exec -it 容器id /bin/bash
POST _analyze
{
"analyzer": "ik_smart",
"text": "我是中国人"
}
POST _analyze
{
"analyzer": "ik_max_word",
"text": "鸡你太美"
}
安装方法和我上一篇文章一样
ElasticSearch-CSDN博客
vagrant ssh密码登录 122集
2.自定义分词器
1.重新安装nginx
命令
在nginx文件夹下,执行
docker run -p 80:80 --name nginx \
-v ./html:/usr/share/nginx/html \
-v ./logs:/var/log/nginx \
-v ./conf:/etc/nginx \
-d nginx:1.10
2. 创建分词文件
/opt/nginx/html/es/fenci.txt
尚硅谷
乔碧螺
3.在es插件,路径下找到xml文件对应的分词库路径,保存位置进行修改
"/opt/elasticearch/plugins/ik/config/IKAnalyzer.cfg.xml"
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<entry key="remote_ext_dict">http://虚拟机地址:80/es/fenci.txt</entry>
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
4.修改以后重启restart es容器
docker restart elasticsearch
6.Elasticsearch整合Spirngboot使用
1.Elasticsearch-Rest-Client 官方 RestClient ,封装类ES操作,API层次分明,上手简单。
最终选择Elasticsearch-Rest-Client (elasticsearch-rest-high-level-client)
https://www.elastic.co/guid/en/elasticsearch/client/java-rest/current/java-rest-high.html
<!-- 导入ES高阶API-->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
package com.jmj.gulimall.search.config;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* 导入依赖
* 编写配置 给容器中注入一个 RestHighLevelClient
* 参照官方API 操作就可以了 https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.4/java-rest-high-getting-started-initialization.html
*/
@Configuration
public class GulimallElasticSearchConfig {
@Bean
public RestHighLevelClient esRestClient() {
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(
new HttpHost("192.168.232.209", 9200, "http")));
return client;
}
}
2.RequestOption
请求选项:比如安全验证,带token 请求头
package com.jmj.gulimall.search.config;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* 导入依赖
* 编写配置 给容器中注入一个 RestHighLevelClient
* 参照官方API 操作就可以了 https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.4/java-rest-high-getting-started-initialization.html
*/
@Configuration
public class GulimallElasticSearchConfig {
public static final RequestOptions COMMON_OPTIONS;
static {
RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
// builder.addHeader("Authorization", "Bearer " + TOKEN);
// builder.setHttpAsyncResponseConsumerFactory(
// new HttpAsyncResponseConsumerFactory
// .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024));
COMMON_OPTIONS = builder.build();
}
@Bean
public RestHighLevelClient esRestClient() {
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(
new HttpHost("192.168.232.209", 9200, "http")));
return client;
}
}
3.Index API
第一种
第二种
第三种
第四种
/**
* 测试存储数据到ES
* 更新也可以
*/
@Test
void indexData() throws IOException {
//index索引 users
IndexRequest indexRequest = new IndexRequest("users");
//设置document id ,不设置就会默认生成
/**
* 若是同样的id重复执行,就是更新操作 乐观锁控制版本
*/
indexRequest.id("1");
//1. key value pair
// indexRequest.source("userName","zhangsan","age",18,"gender","男");
//2,JSON
User user = new User("zhangsan", "男", 18);
String json = new ObjectMapper().writeValueAsString(user);
//一秒超时时间
indexRequest.timeout(TimeValue.timeValueSeconds(1));
indexRequest.source(json, XContentType.JSON);//要保存的内容
//执行操作
IndexResponse index = client.index(indexRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
//提取有用的响应数据
System.out.println(index);
}
4.查询API
@Data
public static class Account{
private int account_number;
private String firstname;
private String address;
private int balance;
private String gender;
private String city;
private String employer;
private String state;
private int age;
private String email;
private String lastname;
}
/**
* search检索
*/
@Test
void searchData() throws IOException {
//1、创建检索请求
SearchRequest searchRequest = new SearchRequest();
//2、指定索引
searchRequest.indices("bank");
//3、检索条件DSL
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
// sourceBuilder.query();
// sourceBuilder.from();
// sourceBuilder.size();
// sourceBuilder.aggregations();
// sourceBuilder.query(QueryBuilders.matchAllQuery());
sourceBuilder.query(QueryBuilders.matchQuery("address","mill"));
//按照年龄进行分组
TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
sourceBuilder.aggregation(ageAgg);
//计算平均薪资
AvgAggregationBuilder balanceAge = AggregationBuilders.avg("balanceAvg").field("balance");
sourceBuilder.aggregation(balanceAge);
System.out.println("检索条件:"+sourceBuilder);
searchRequest.source(sourceBuilder);
//4、执行检索
SearchResponse response = client.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
//5、响应 分析结果
// System.out.println(response.toString());
SearchHits hits = response.getHits();
SearchHit[] hits1 = hits.getHits();
for (SearchHit documentFields : hits1) {
String sourceAsString = documentFields.getSourceAsString();
Account account = new ObjectMapper().readValue(sourceAsString, Account.class);
System.out.println(account);
}
//获取分析数据
Aggregations aggregations = response.getAggregations();
Terms ageAgg1 = aggregations.get("ageAgg");
for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("年龄:"+keyAsString+"=>"+bucket.getDocCount());
}
Avg balanceAvg = aggregations.get("balanceAvg");
System.out.println("平均薪资:"+balanceAvg.getValue());
}
7.SKU 在es种存储的模型
其中,库存信息的标题使用了ik分词器,图片信息,品牌名,品牌id等信息均不可检索。商品的规格参数等信息以nested类型,即嵌入属性存储。相关的细节这里不再赘述。
PUT product
{
"mappings": {
"properties": {
"skuId": {
"type": "long"
},
"spuId": {
"type": "long"
},
"skuTitle": {
"type": "text",
"analyzer": "ik_smart"
},
"skuPrice": {
"type": "keyword"
},
"skuImg": {
"type": "keyword",
"index": false,
"doc_values": false
},
"saleCount": {
"type": "long"
},
"hosStock": {
"type": "boolean"
},
"hotScore": {
"type": "long"
},
"brandId": {
"type": "long"
},
"catalogId": {
"type": "long"
},
"brandName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"brandImg": {
"type": "keyword",
"index": false,
"doc_values": false
},
"catalogName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"attrs": {
"type": "nested",
"properties": {
"attrId": {
"type": "long"
},
"attrName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"attrValue": {
"type": "keyword"
}
}
}
}
}
}
8.ES扁平化处理
PUT my_index/_doc/1
{
"group":"fans",
"user":[
{
"first":"John",
"last":"Smith"
},
{
"first":"Alice",
"last":"White"
}
]
}
GET my_index/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"user.first": "Alice"
}
},
{
"match": {
"user.first": "Alice"
}
}
]
}
}
}
取消扁平化处理
PUT my_index
{
"mappings": {
"properties": {
"user":{
"type": "nested"
}
}
}
}
再次查询
9. 商城上架
@Override
@Transactional(rollbackFor = Exception.class)
public void up(Long spuId) {
//组装需要的数据
//1. 查出当前 spuid 对应的所有sku 信息,品牌 的名字。
List<SkuInfoEntity> skuInfoEntityList = skuInfoService.getSkusBySpuId(spuId);
//TODO 查询当前sku的所有可以用来检索的属性
List<ProductAttrValueEntity> baseAttrs = productAttrValueService.baseAttrlistforspu(spuId);
List<Long> attrIds = baseAttrs.stream().map(a -> a.getAttrId()).collect(Collectors.toList());
List<Long> searchAttrIds = attrService.selectSearchAtts(attrIds);
List<SkuEsModel.Attrs> attrsList = baseAttrs.stream().filter(item -> searchAttrIds.contains(item.getAttrId()))
.map(item -> {
SkuEsModel.Attrs attrs1 = new SkuEsModel.Attrs();
BeanUtils.copyProperties(item, attrs1);
return attrs1;
})
.collect(Collectors.toList());
//TODO 发送远程调用 库存系统查询是否有库存
List<Long> skuIds = skuInfoEntityList.stream().map(s -> s.getSkuId()).distinct().collect(Collectors.toList());
List<SkuHasStockVo> skusHasStock = wareFeignService.getSkusHasStock(skuIds);
Map<Long, Boolean> stockMap = skusHasStock.stream().collect(Collectors.toMap(s -> s.getSkuId(), s -> s.getHasStock()));
//2.封装每个SKU 的信息
List<SkuEsModel> upProducts = skuInfoEntityList.stream().map(sku -> {
SkuEsModel esModel = new SkuEsModel();
BeanUtils.copyProperties(sku, esModel);
esModel.setSkuPrice(sku.getPrice());
esModel.setSkuImg(sku.getSkuDefaultImg());
Long skuId = esModel.getSkuId();
Boolean aBoolean = stockMap.get(skuId);
if (aBoolean!=null){
esModel.setHasStock(aBoolean);
}else {
esModel.setHasStock(false);
}
//TODO 热度评分
esModel.setHotScore(0L);
//TODO 查询品牌和分类的名字信息
BrandEntity brand = brandService.getById(esModel.getBrandId());
esModel.setBrandName(brand.getName());
esModel.setBrandImg(brand.getLogo());
CategoryEntity category = categoryService.getById(esModel.getCatalogId());
esModel.setCatalogName(category.getName());
//设置检索属性
esModel.setAttrs(attrsList);
return esModel;
}).collect(Collectors.toList());
//TODO 将数据发送给es进行保存
searchFeignService.productStatusUp(upProducts);
//TODO 修改状态
this.update(new UpdateWrapper<SpuInfoEntity>()
.set("publish_status", ProductConstant.StatusEnum.SPU_UP.getCode())
.set("update_taime",new Date())
.eq("id",spuId));
//Feign调用流程
/**
* 1、构造请求数据,将对象转为json
* 2、发送请求进行执行(执行成功会解码响应数据)
* 3、执行请求会有重试机制
* //默认重试机制是关闭状态
* while(true){
*
* }
*/
}