- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、环境
- 语言:Python3、Pytorch
- 开发环境
- 电脑系统:Windows 10
- 语言环境:Python 3.9.2
- 编译器:VS Code
- 显卡:3060
- CUDA版本:Release 11.4, V11.4.48
- 本周任务:将YOLOv5s模型的C3修改成C2,并将C2插入到第2层与第3层之间
二、了解yolo.py文件
- yolov5.py是构建和操作yolov5模型的文件
- parse_model函数:在common.py中有许多模块,此函数负责将这些模块以及其他模块拼接起来,搭建模型
- Detect模块:构建Detect层,将输入的特征图转换为需要的shape
- Model模块:此模块包含了许多功能,包括特征可视化、打印模型信息等。
三、修改C3
- C2就是上周修改后的代码,代码如下:
class C2(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)
- 当在common.py中修改具体代码后,需在yolo.py中进行相应的修改:
def parse_model(d, ch): # model_dict, input_channels(3)
# Parse a YOLOv5 model.yaml dictionary
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
anchors, nc, gd, gw, act, ch_mul = (
d["anchors"],
d["nc"],
d["depth_multiple"],
d["width_multiple"],
d.get("activation"),
d.get("channel_multiple"),
)
if act:
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
LOGGER.info(f"{colorstr('activation:')} {act}") # print
if not ch_mul:
ch_mul = 8
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
with contextlib.suppress(NameError):
args[j] = eval(a) if isinstance(a, str) else a # eval strings
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in {
Conv,
GhostConv,
Bottleneck,
GhostBottleneck,
SPP,
SPPF,
DWConv,
MixConv2d,
Focus,
CrossConv,
BottleneckCSP,
C3,
C2,
C3TR,
C3SPP,
C3Ghost,
nn.ConvTranspose2d,
DWConvTranspose2d,
C3x,
}:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, ch_mul)
args = [c1, c2, *args[1:]]
if m in {BottleneckCSP, C3, C2, C3TR, C3Ghost, C3x}:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
# TODO: channel, gw, gd
elif m in {Detect, Segment}:
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
if m is Segment:
args[3] = make_divisible(args[3] * gw, ch_mul)
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
else:
c2 = ch[f]
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace("__main__.", "") # module type
np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}") # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
在此段代码中加入了C2,让模型知道并调用C2
- 接着将C2插入到第2层与第3层之间,即修改yolov5s.yaml文件
backbone:
# [from, number, module, args]
[
[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]], # C3*1 = 3, C3*2 = 6, C3*3 = 9
[-1, 3, C2, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 3, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 6, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]], # 8
[-1, 1, SPPF, [1024, 5]], # 9
]
- 模型结构如下:
from n params module arguments
0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 18816 models.common.C2 [64, 64, 1]
4 -1 1 73984 models.common.Conv [64, 128, 3, 2]
5 -1 1 74496 models.common.C3 [128, 128, 1]
6 -1 1 295424 models.common.Conv [128, 256, 3, 2]
7 -1 2 460800 models.common.C3 [256, 256, 2]
8 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
9 -1 1 1182720 models.common.C3 [512, 512, 1]
10 -1 1 656896 models.common.SPPF [512, 512, 5]
11 -1 1 131584 models.common.Conv [512, 256, 1, 1]
12 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
13 [-1, 6] 1 0 models.common.Concat [1]
14 -1 1 361984 models.common.C3 [512, 256, 1, False]
15 -1 1 33024 models.common.Conv [256, 128, 1, 1]
16 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
17 [-1, 4] 1 0 models.common.Concat [1]
18 -1 1 90880 models.common.C3 [256, 128, 1, False]
19 -1 1 147712 models.common.Conv [128, 128, 3, 2]
20 [-1, 14] 1 0 models.common.Concat [1]
21 -1 1 329216 models.common.C3 [384, 256, 1, False]
22 -1 1 590336 models.common.Conv [256, 256, 3, 2]
...
24 -1 1 1313792 models.common.C3 [768, 512, 1, False]
25 [17, 20, 23] 1 359805 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 384, 768]]
四、运行结果
五、总结
- 本周对C3的修改与上周相同,并将修改后的模块用做单独的C2
- 首先在common.py文件中修改C2的具体代码
- 其次在yolo.py中添加C2名,使程序能知道C2
- 最后在yolov5s.yaml中将C2添加在第2层与第3层之间