浅谈机器学习之基于RNN进行充值的油费预测

浅谈机器学习之基于RNN进行充值的油费预测

引言

随着智能交通和物联网技术的发展,油费预测已成为研究的热点之一。准确的油费预测不仅能帮助车主合理规划出行成本,还可以为油价波动提供参考依据。近年来,递归神经网络(RNN)因其在处理时间序列数据方面的独特优势,受到越来越多的关注。本文将探讨基于RNN的油费预测方法及其应用。
RNN的基本原理
RNN通过循环连接,将前一时刻的信息传递给当前时刻,实现对序列数据的建模。RNN的基本结构如下所示:
● 输入层:接受当前时刻的输入数据。
● 隐藏层:通过激活函数处理输入数据,并将结果传递到下一个时刻。
● 输出层:生成当前时刻的预测结果。
由于标准RNN在长序列学习中可能出现梯度消失问题,长短期记忆网络(LSTM)和门控循环单元(GRU)等变种RNN应运而生。这些网络能够更好地捕捉长时间依赖关系,是油费预测的理想选择。

数据准备

进行油费预测需要收集相关的数据,为了简单起见,我这边收集了我历次加油的数据,部分结果如下:
在这里插入图片描述
这些数据需要进行清洗和预处理,以便于后续建模。

模型构建

我们可以按照以下步骤构建RNN模型:

数据预处理

● 归一化:对输入数据进行归一化处理,提高模型的收敛速度。
● 序列化:将时间序列数据转化为输入特征和标签,形成监督学习问题。
第一步:数据读取:

#数据展示
import pandas as pd
import numpy as np
data_train = pd.read_csv('gas.csv')

#获取汽油数据
price = data_train.loc[:,'price']

第二步:数据展示:

# 数据可视化
from matplotlib import pyplot as plt
fig1 = plt.figure()
plt.plot(price)
plt.title('gas price')
plt.xlabel('time series')
plt.ylabel('price')
plt.show()

展示结果如下:
在这里插入图片描述
第三步:归一化处理

#数据预处理,归一化
price_t = price/max(price)

第四步:数据序列化

#数据序列提取方法
def extract_data(data,time_step=10):
    X = []
    y = []
    for i in range(len(data)-time_step):
        X.append([a for a in data[i:i+time_step]])
        y.append(data[i+time_step])
    X = np.array(X)
    X = X.reshape(X.shape[0],X.shape[1],1)
    return X,y

#数据处理
time_step = 5
X,y = extract_data(price,time_step)
X = np.array(X)
y = np.array(y)
print(X)
print(y)

模型建立

第一步:建立模型:

#建立模型
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN
model = Sequential()
#添加RNN层
model.add(SimpleRNN(units=10,input_shape=(5,1),activation='relu'))
#输出层
model.add(Dense(units=1,activation='linear'))
model.summary()

打印信息的结果如下:
在这里插入图片描述
第二步:模型训练:

#模型配置
model.compile(optimizer='adam',loss='mean_squared_error')
#模型训练
model.fit(X,y,batch_size=3,epochs=200)

第三步:结果预测与展示

#结果预测
y_train_predict = model.predict(X)
y_train_predict = y_train_predict*max(price)

#预测与结果展示
y = [i*max(price) for i in y]

#数据可视化
fig2 = plt.figure()
plt.plot(y,label='real price')
plt.plot(y_train_predict,label='predict price')
plt.title('price')
plt.xlabel('time series')
plt.ylabel('price')
plt.legend()
plt.show()

模型评估

训练完成后,使用测试集对模型进行评估,判断模型的预测精度。

from sklearn.metrics import r2_score
r2_train = r2_score(y,y_train_predict)
print(r2_train)

结果与讨论

经过训练的RNN模型能够较为准确地预测油费的变化趋势。可以通过可视化的方式比较模型预测值与真实值,直观展示模型的效果。
然而,模型的预测能力受到多种因素的影响,如数据的质量、特征的选择、模型的复杂度和超参数的设置等。因此,在实际应用中,需要不断优化模型。

结论

基于RNN的油费预测方法展示了良好的预测性能。通过对历史数据的深入分析和机器学习技术的应用,能够为车主和相关产业提供有效的决策支持。未来,可以结合其他先进的深度学习技术(如卷积神经网络)以及更多的外部变量,进一步提升油费预测的准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/957773.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

There is no getter for property named ‘XXX’ in ‘XXXX‘

写了一个POST方法用于新增软件描述信息,报错显示在我的实体类中没有这个属性的getter方法,实体类如下: 报错没有softWare这个属性的getter方法,但是我的实体类中本来就没有这个属性(笑哭...) 后面查了许多资料发现&am…

基于springboot+vue的校园二手物品交易系统的设计与实现

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

H266/VVC 变换编码中大尺寸变换块高频系数置零技术

大尺寸变换块高频系数置零 近年来视频技术有了飞速的变化,视频的分辨率从 1080P 过渡到 4K,并逐渐向发展 8K。为了适应日益增长的视频分辨率,新的编码技术采用了更大尺寸的变换块来提高编码效率,最大变换块大小变成 64x64。变换块…

5989.数字接龙

5989.数字接龙 小蓝最近迷上了一款名为《数字接龙》的迷宫游戏,游戏在一个大小为 NN 的格子棋盘上展开,其中每一个格子处都有着一个 0…K−10…K−1 之间的整数。 游戏规则如下: 从左上角 (0,0) 处出发,目标是到达右下角 (N−1…

Titans: 学习在测试时记忆 - 论文解读与总结

论文地址:https://arxiv.org/pdf/2501.00663v1 本文介绍了一篇由 Google Research 发表的关于新型神经网络架构 Titans 的论文,该架构旨在解决传统 Transformer 在处理长序列时的局限性。以下是对论文的详细解读,并结合原文图片进行说明&…

账号IP属地:依据手机号还是网络环境?

在数字化生活中,账号的IP属地信息往往成为我们关注的一个焦点。无论是出于安全考虑,还是为了满足某些特定服务的需求,了解账号IP属地的确定方式都显得尤为重要。那么,账号IP属地根据手机号还是网络来确定的呢?本文将深…

微信小程序实现自定义日历功能

文章目录 1. 创建日历组件实现步骤:2. 代码实现过程3. 实现效果图4. 关于作者其它项目视频教程介绍 1. 创建日历组件实现步骤: 创建日历组件:首先,你需要创建一个日历组件,包含显示日期的逻辑。样式设计:为…

YOLOv9改进,YOLOv9检测头融合RFAConv卷积,适合目标检测、分割任务

摘要 空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制—…

【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构

🌟个人主页:落叶 🌟当前专栏: 机器学习专栏 目录 引言 分裂型层次聚类(Divisive Hierarchical Clustering) 1. 基本原理 2. 分裂型层次聚类的算法步骤 Step 1: 初始化 Step 2: 选择分裂的簇 Step 3: 执行分裂操作…

VirtualBox can‘t enable the AMD-V extension

个人博客地址:VirtualBox cant enable the AMD-V extension | 一张假钞的真实世界 最近一次完成Deepin的系统更新后,进入VirtualBox创建的虚拟机(Widows10)时,出现以下错误: 根据网址“https://askubuntu.…

[JavaScript] 数组与对象详解

文章目录 数组(Array)什么是数组数组的常用操作**访问数组元素****修改数组元素****数组的长度****添加和删除元素** 常用数组方法map():filter():reduce():**其他实用方法** 对象(Object)什么是对象对象的基本操作**访问属性****…

“模板”格式化发布新创诗(为《诗意 2 0 2 5》贡献力量)

预置MarkDown&Html文本,脚本读取f-string模板完成录入嵌套。 (笔记模板由python脚本于2025-01-22 19:19:58创建,本篇笔记适合喜欢分享的达人的coder翻阅) 【学习的细节是欢悦的历程】 博客的核心价值:在于输出思考与经验,而不…

论文速读|Multi-Modal Disordered Representation Learning Network for TBPS.AAAI24

论文地址:Multi-Modal Disordered Representation Learning Network for Description-Based Person Search 代码地址:未开源(2025.01.22) bib引用: inproceedings{yang2024multi,title{Multi-Modal Disordered Repres…

计算机视觉算法实战——实体物体跟踪

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​​​​​ ​ 1. 领域介绍✨✨ 实体物体跟踪(Object Tracking)是计算机视觉领域中的一个重要研究方向&#x…

C++17 新特性深入解析:constexpr 扩展、if constexpr 和 constexpr lambda

C17 不仅增强了现有特性,还引入了一些全新的编程工具,极大地提升了代码的效率和表达力。在这篇文章中,我们将深入探讨 C17 中与 constexpr 相关的三个重要特性:constexpr 的扩展用法、if constexpr 和 constexpr lambda。这些特性…

IVR:交互式语音应答系统解析及其应用

引言 IVR(Interactive Voice Response),即交互式语音应答系统,是一种功能强大的电话自动服务系统。它通过语音识别和按键反馈,使用户与系统之间实现实时交互,为用户提供自助服务、咨询、报告、投诉等多种功…

Observability:最大化可观察性 AI 助手体验的 5 大提示(prompts)

作者:来自 Elastic Zoia_AUBRY 在过去三年担任客户工程师期间,我遇到了数百名客户,他们最常问的问题之一是:“我的数据在 Elastic 中;我该如何利用它获得最大优势?”。 如果这适用于你,那么本…

【Vim Masterclass 笔记25】S10L45:Vim 多窗口的常用操作方法及相关注意事项

文章目录 S10L45 Working with Multiple Windows1 水平分割窗口2 在水平分割的新窗口中显示其它文件内容3 垂直分割窗口4 窗口的关闭5 在同一窗口水平拆分出多个窗口6 关闭其余窗口7 让四个文件呈田字形排列8 光标在多窗口中的定位9 调节子窗口的尺寸大小10 变换子窗口的位置11…

STM32_SD卡的SDIO通信_基础读写

本篇将使用CubeMXKeil, 创建一个SD卡读写的工程。 目录 一、SD卡要点速读 二、SDIO要点速读 三、SD卡座接线原理图 四、CubeMX新建工程 五、CubeMX 生成 SD卡的SDIO通信部分 六、Keil 编辑工程代码 七、实验效果 一、SD卡 速读 SD卡,全称Secure Digital M…

大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》

摘要 预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1) 开放领域的复杂性,(2) 有限的上下文长度&#xff…