汽车识别项目

窗口设计

这里的代码放在py文件最前面或者最后面都无所谓

# 创建主窗口
window = tk.Tk()
window.title("图像目标检测系统")
window.geometry('1000x650')  # 设置窗口大小

# 创建背景画布并使用grid布局管理器
canvas_background = tk.Canvas(window, width=1000, height=650, bg="#e6f2ff")
canvas_background.grid(row=0, column=0, columnspan=2, rowspan=4, sticky='nsew')  # 使用grid管理器

# 加载背景图像
background_image = Image.open(r"图标/5.jpg")  # 替换为您的背景图像路径
background_image = background_image.resize((1000, 650), Image.Resampling.LANCZOS)  # 调整图像大小以适应窗口
background_photo = ImageTk.PhotoImage(background_image)

# 在背景画布上绘制背景图像
canvas_background.create_image(0, 0, anchor='nw', image=background_photo)
canvas_background.image = background_photo  # 保持对图像的引用

# 加载按钮图片
upload_img = Image.open(r"图标/3.jpg")  # 替换为您的上传按钮图片路径
upload_img = upload_img.resize((100, 50), Image.Resampling.LANCZOS)  # 调整图片大小
upload_img = ImageTk.PhotoImage(upload_img)

start_detection_img = Image.open(r"图标/2.jpg")  # 替换为您的开始检测按钮图片路径
start_detection_img = start_detection_img.resize((100, 50), Image.Resampling.LANCZOS)  # 调整图片大小
start_detection_img = ImageTk.PhotoImage(start_detection_img)

img_intensification_img = Image.open(r"图标/1.jpg")  # 替换为您的图像增强按钮图片路径
img_intensification_img = img_intensification_img.resize((100, 50), Image.Resampling.LANCZOS)  # 调整图片大小
img_intensification_img = ImageTk.PhotoImage(img_intensification_img)

# 创建两个画布区域
canvas_left = tk.Canvas(window, width=224, height=224, bg="#e6f2ff")
canvas_right = tk.Canvas(window, width=224, height=224, bg="#e6f2ff")
# 加载图片
waiting_image = Image.open(r"图标/8.jpg")  # 替换为您的图片路径
detected_image = Image.open(r"图标/7.jpg")  # 替换为您的图片路径
waiting_image = waiting_image.resize((200, 50), Image.Resampling.LANCZOS)
detected_image = detected_image.resize((200, 50), Image.Resampling.LANCZOS)
waiting_photo = ImageTk.PhotoImage(waiting_image)
detected_photo = ImageTk.PhotoImage(detected_image)
# 将两个画布区域放置在主窗口中
canvas_left.grid(row=1, column=0, padx=10, pady=10, sticky='nsew')
canvas_right.grid(row=1, column=1, padx=10, pady=10, sticky='nsew')

# 创建标签
label_waiting_image = tk.Label(window, image=waiting_photo, font=("Arial", 16), bg="#e6f2ff")
label_detected_image = tk.Label(window, image=detected_photo, font=("Arial", 16), bg="#e6f2ff")

# 定位标签
label_waiting_image.grid(row=0, column=0, padx=10, pady=10, sticky='nsew')
label_detected_image.grid(row=0, column=1, padx=10, pady=10, sticky='nsew')

# 设置标签的图片
label_waiting_image.config(image=waiting_photo)
label_detected_image.config(image=detected_photo)


# 创建按钮并放置在主窗口上
button_upload = tk.Button(window, image=upload_img, command=upload_image, relief="flat", borderwidth=0, background='#e6f2ff', activebackground='#e6f2ff')
button_start_detection = tk.Button(window, image=start_detection_img, command=start_detection, relief="flat", borderwidth=0, background='#e6f2ff', activebackground='#e6f2ff')
img_intensification = tk.Button(window, image=img_intensification_img, command=img_inten, relief="flat", borderwidth=0, background='#e6f2ff', activebackground='#e6f2ff')

# 将按钮放置在主窗口上
button_upload.place(x=155,y=495)
button_start_detection.place(x=755,y=495)
img_intensification.place(x=455,y=495)


# 运行主窗口
window.mainloop()

1.导入需要用到的包

import torch.nn as nn
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import torch
from torchvision import transforms, models
from efficientnet_pytorch import EfficientNet
import numpy as np
import cv2

2.加载模型

这里加载了模型需要的可以联系我

class EfficientNetModel(nn.Module):
    def __init__(self, num_classes=10, pretrained=True):
        super(EfficientNetModel, self).__init__()
        # 加载预训练的EfficientNet模型
        self.efficientnet = EfficientNet.from_name('efficientnet-b3')
        #
        # if pretrained:
        #     # 加载预训练权重
        #     self.efficientnet.load_state_dict(
        #         torch.load(r'D:\python\pytorch\Vehicle identification\save pth\efficientnet-b3-5fb5a3c3.pth'))

        # 获取EfficientNet模型的最后一层全连接层的输入特征数量
        num_ftrs = self.efficientnet._fc.in_features
        # 将EfficientNet模型的最后一层全连接层替换为一个新的全连接层,输出特征数量设置为num_classes
        self.efficientnet._fc = nn.Linear(num_ftrs, num_classes)

    # forward方法定义了前向传播过程
    def forward(self, x):
        return self.efficientnet(x)


# Example usage
model = EfficientNetModel(num_classes=12)


# 加载训练好的模型参数
model_path = 'best_EfficientNet_b3_updata1.pth'
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()

3.定义图像转换

# 定义图像转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # ResNet-50 的输入图像大小
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  # ResNet-50 的标准化
])

4.定义车类标签

classes =  ['皮卡', '敞篷车', '跑车', '掀背两箱车', '小型面包车', 'SUV', '轿车', '厢式货车', '旅行车', '公共汽车', '消防车', '出租车']

5.定义全局变量

# 初始化全局变量
selected_image_path = None
label_text = None
right_canvas_image = None

6.几个方法

def upload_image():
    global selected_image_path, label_text
    file_path = filedialog.askopenfilename()
    if file_path:
        selected_image_path = file_path
        image = Image.open(file_path)
        original_width, original_height = image.size

        # 计算宽高比
        aspect_ratio = original_width / original_height

        # 根据画布尺寸和宽高比计算新尺寸
        canvas_width = 500
        canvas_height = 300
        new_width = canvas_width
        new_height = int(new_width / aspect_ratio)
        if new_height > canvas_height:
            new_height = canvas_height
            new_width = int(new_height * aspect_ratio)

        # 调整图片大小
        image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)

        # 居中图片
        photo = ImageTk.PhotoImage(image)
        canvas_left.create_image((canvas_width - new_width) / 2, (canvas_height - new_height) / 2, anchor='nw', image=photo)
        canvas_left.image = photo  # Keep a reference!

        # 创建图片的标签
        if label_text is None:
            label_text = tk.Label(window, text="", font=("Arial", 16))
            label_text.grid(row=3, column=0, columnspan=2, padx=10, pady=10)

def start_detection():
    global right_canvas_image
    if selected_image_path is not None:
        image = Image.open(selected_image_path)
        input_image = transform(image).unsqueeze(0)
        with torch.no_grad():
            outputs = model(input_image)
            _, predicted = torch.max(outputs, 1)
            label = classes[predicted.item()]
            probabilities = torch.nn.functional.softmax(outputs, dim=1)
            max_probability = probabilities[0][predicted].item()
            label_text.config(text=f"{label} - {max_probability:.2f}")

        # 显示图片在右侧画布
        image = Image.open(selected_image_path)  # 重新打开图片以避免被转换影响
        original_width, original_height = image.size
        aspect_ratio = original_width / original_height
        canvas_width = 500
        canvas_height = 300
        new_width = canvas_width
        new_height = int(new_width / aspect_ratio)
        if new_height > canvas_height:
            new_height = canvas_height
            new_width = int(new_height * aspect_ratio)
        image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
        photo = ImageTk.PhotoImage(image)

        # 检查是否已经创建了右侧画布的图片
        if right_canvas_image is None:
            right_canvas_image = canvas_right.create_image((canvas_width - new_width) / 2, (canvas_height - new_height) / 2, anchor='nw', image=photo)
        else:
            canvas_right.itemconfig(right_canvas_image, image=photo)
        canvas_right.image = photo  # Keep a reference!
    else:
        messagebox.showwarning("警告", "请先选择一张图像")


    # 将标签放置在图片上
    label_text.grid(row=1, column=1, padx=10, pady=10, sticky='n')

def replaceZeroes(data):
    min_nonzero = min(data[np.nonzero(data)])
    data[data == 0] = min_nonzero
    return data


def MSR(img, scales):
    weight = 1 / 3.0
    scales_size = len(scales)
    h, w = img.shape[:2]
    log_R = np.zeros((h, w), dtype=np.float32)

    for i in range(scales_size):
        img = replaceZeroes(img)
        L_blur = cv2.GaussianBlur(img, (scales[i], scales[i]), 0)
        L_blur = replaceZeroes(L_blur)
        dst_Img = cv2.log(img / 255.0)
        dst_Lblur = cv2.log(L_blur / 255.0)
        dst_Ixl = cv2.multiply(dst_Img, dst_Lblur)
        log_R += weight * cv2.subtract(dst_Img, dst_Ixl)

    dst_R = cv2.normalize(log_R, None, 0, 255, cv2.NORM_MINMAX)
    log_uint8 = cv2.convertScaleAbs(dst_R)
    return log_uint8

def img_inten():
    global selected_image_path, right_canvas_image
    if selected_image_path is not None:
        # 读取图像
        image = Image.open(selected_image_path)
        # 转换为OpenCV格式
        image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

        # 应用MSR算法
        scales = [15, 101, 301]  # 可根据需要调整
        b_gray, g_gray, r_gray = cv2.split(image)
        b_gray = MSR(b_gray, scales)
        g_gray = MSR(g_gray, scales)
        r_gray = MSR(r_gray, scales)
        enhanced_image = cv2.merge([b_gray, g_gray, r_gray])

        # 转换回PIL图像格式
        enhanced_image = Image.fromarray(cv2.cvtColor(enhanced_image, cv2.COLOR_BGR2RGB))

        # 调整图像大小以适应模型输入
        enhanced_image = enhanced_image.resize((224, 224), Image.Resampling.LANCZOS)

        # 转换图像为模型可以接受的格式
        input_image = transform(enhanced_image).unsqueeze(0)

        # 使用模型进行检测
        with torch.no_grad():
            outputs = model(input_image)
            _, predicted = torch.max(outputs, 1)
            label = classes[predicted.item()]
            probabilities = torch.nn.functional.softmax(outputs, dim=1)
            max_probability = probabilities[0][predicted].item()

        # 显示增强后的图像和检测结果在右侧画布
        enhanced_image = enhanced_image.resize((500, 300), Image.Resampling.LANCZOS)
        photo = ImageTk.PhotoImage(enhanced_image)
        if right_canvas_image is None:
            right_canvas_image = canvas_right.create_image((500 - 500) / 2, (300 - 300) / 2, anchor='nw', image=photo)
        else:
            canvas_right.itemconfig(right_canvas_image, image=photo)
        canvas_right.image = photo  # Keep a reference!

        # 更新标签文本
        label_text.config(text=f"{label} - {max_probability:.2f}")
    else:
        messagebox.showwarning("警告", "请先选择一张图像")

全部代码:

这里直接用是用不了的,只是给大家提供一个思路,模型可以自己训练,有需要的可以联系我,我把整个代码给你。

import torch.nn as nn
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import torch
from torchvision import transforms, models
from efficientnet_pytorch import EfficientNet
import numpy as np
import cv2
class EfficientNetModel(nn.Module):
    def __init__(self, num_classes=10, pretrained=True):
        super(EfficientNetModel, self).__init__()
        # 加载预训练的EfficientNet模型
        self.efficientnet = EfficientNet.from_name('efficientnet-b3')
        #
        # if pretrained:
        #     # 加载预训练权重
        #     self.efficientnet.load_state_dict(
        #         torch.load(r'D:\python\pytorch\Vehicle identification\save pth\efficientnet-b3-5fb5a3c3.pth'))

        # 获取EfficientNet模型的最后一层全连接层的输入特征数量
        num_ftrs = self.efficientnet._fc.in_features
        # 将EfficientNet模型的最后一层全连接层替换为一个新的全连接层,输出特征数量设置为num_classes
        self.efficientnet._fc = nn.Linear(num_ftrs, num_classes)

    # forward方法定义了前向传播过程
    def forward(self, x):
        return self.efficientnet(x)


# Example usage
model = EfficientNetModel(num_classes=12)


# 加载训练好的模型参数
model_path = 'best_EfficientNet_b3_updata1.pth'
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()

# 定义图像转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # ResNet-50 的输入图像大小
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  # ResNet-50 的标准化
])

# 类别标签(请根据您的实际类别名称设置)

classes =  ['皮卡', '敞篷车', '跑车', '掀背两箱车', '小型面包车', 'SUV', '轿车', '厢式货车', '旅行车', '公共汽车', '消防车', '出租车']




# 初始化全局变量
selected_image_path = None
label_text = None
right_canvas_image = None

def upload_image():
    global selected_image_path, label_text
    file_path = filedialog.askopenfilename()
    if file_path:
        selected_image_path = file_path
        image = Image.open(file_path)
        original_width, original_height = image.size

        # 计算宽高比
        aspect_ratio = original_width / original_height

        # 根据画布尺寸和宽高比计算新尺寸
        canvas_width = 500
        canvas_height = 300
        new_width = canvas_width
        new_height = int(new_width / aspect_ratio)
        if new_height > canvas_height:
            new_height = canvas_height
            new_width = int(new_height * aspect_ratio)

        # 调整图片大小
        image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)

        # 居中图片
        photo = ImageTk.PhotoImage(image)
        canvas_left.create_image((canvas_width - new_width) / 2, (canvas_height - new_height) / 2, anchor='nw', image=photo)
        canvas_left.image = photo  # Keep a reference!

        # 创建图片的标签
        if label_text is None:
            label_text = tk.Label(window, text="", font=("Arial", 16))
            label_text.grid(row=3, column=0, columnspan=2, padx=10, pady=10)

def start_detection():
    global right_canvas_image
    if selected_image_path is not None:
        image = Image.open(selected_image_path)
        input_image = transform(image).unsqueeze(0)
        with torch.no_grad():
            outputs = model(input_image)
            _, predicted = torch.max(outputs, 1)
            label = classes[predicted.item()]
            probabilities = torch.nn.functional.softmax(outputs, dim=1)
            max_probability = probabilities[0][predicted].item()
            label_text.config(text=f"{label} - {max_probability:.2f}")

        # 显示图片在右侧画布
        image = Image.open(selected_image_path)  # 重新打开图片以避免被转换影响
        original_width, original_height = image.size
        aspect_ratio = original_width / original_height
        canvas_width = 500
        canvas_height = 300
        new_width = canvas_width
        new_height = int(new_width / aspect_ratio)
        if new_height > canvas_height:
            new_height = canvas_height
            new_width = int(new_height * aspect_ratio)
        image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
        photo = ImageTk.PhotoImage(image)

        # 检查是否已经创建了右侧画布的图片
        if right_canvas_image is None:
            right_canvas_image = canvas_right.create_image((canvas_width - new_width) / 2, (canvas_height - new_height) / 2, anchor='nw', image=photo)
        else:
            canvas_right.itemconfig(right_canvas_image, image=photo)
        canvas_right.image = photo  # Keep a reference!
    else:
        messagebox.showwarning("警告", "请先选择一张图像")


    # 将标签放置在图片上
    label_text.grid(row=1, column=1, padx=10, pady=10, sticky='n')


def replaceZeroes(data):
    min_nonzero = min(data[np.nonzero(data)])
    data[data == 0] = min_nonzero
    return data


def MSR(img, scales):
    weight = 1 / 3.0
    scales_size = len(scales)
    h, w = img.shape[:2]
    log_R = np.zeros((h, w), dtype=np.float32)

    for i in range(scales_size):
        img = replaceZeroes(img)
        L_blur = cv2.GaussianBlur(img, (scales[i], scales[i]), 0)
        L_blur = replaceZeroes(L_blur)
        dst_Img = cv2.log(img / 255.0)
        dst_Lblur = cv2.log(L_blur / 255.0)
        dst_Ixl = cv2.multiply(dst_Img, dst_Lblur)
        log_R += weight * cv2.subtract(dst_Img, dst_Ixl)

    dst_R = cv2.normalize(log_R, None, 0, 255, cv2.NORM_MINMAX)
    log_uint8 = cv2.convertScaleAbs(dst_R)
    return log_uint8

def img_inten():
    global selected_image_path, right_canvas_image
    if selected_image_path is not None:
        # 读取图像
        image = Image.open(selected_image_path)
        # 转换为OpenCV格式
        image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

        # 应用MSR算法
        scales = [15, 101, 301]  # 可根据需要调整
        b_gray, g_gray, r_gray = cv2.split(image)
        b_gray = MSR(b_gray, scales)
        g_gray = MSR(g_gray, scales)
        r_gray = MSR(r_gray, scales)
        enhanced_image = cv2.merge([b_gray, g_gray, r_gray])

        # 转换回PIL图像格式
        enhanced_image = Image.fromarray(cv2.cvtColor(enhanced_image, cv2.COLOR_BGR2RGB))

        # 调整图像大小以适应模型输入
        enhanced_image = enhanced_image.resize((224, 224), Image.Resampling.LANCZOS)

        # 转换图像为模型可以接受的格式
        input_image = transform(enhanced_image).unsqueeze(0)

        # 使用模型进行检测
        with torch.no_grad():
            outputs = model(input_image)
            _, predicted = torch.max(outputs, 1)
            label = classes[predicted.item()]
            probabilities = torch.nn.functional.softmax(outputs, dim=1)
            max_probability = probabilities[0][predicted].item()

        # 显示增强后的图像和检测结果在右侧画布
        enhanced_image = enhanced_image.resize((500, 300), Image.Resampling.LANCZOS)
        photo = ImageTk.PhotoImage(enhanced_image)
        if right_canvas_image is None:
            right_canvas_image = canvas_right.create_image((500 - 500) / 2, (300 - 300) / 2, anchor='nw', image=photo)
        else:
            canvas_right.itemconfig(right_canvas_image, image=photo)
        canvas_right.image = photo  # Keep a reference!

        # 更新标签文本
        label_text.config(text=f"{label} - {max_probability:.2f}")
    else:
        messagebox.showwarning("警告", "请先选择一张图像")


# ... [剩余的代码] ...

# 创建主窗口
window = tk.Tk()
window.title("图像目标检测系统")
window.geometry('1000x650')  # 设置窗口大小

# 创建背景画布并使用grid布局管理器
canvas_background = tk.Canvas(window, width=1000, height=650, bg="#e6f2ff")
canvas_background.grid(row=0, column=0, columnspan=2, rowspan=4, sticky='nsew')  # 使用grid管理器

# 加载背景图像
background_image = Image.open(r"图标/5.jpg")  # 替换为您的背景图像路径
background_image = background_image.resize((1000, 650), Image.Resampling.LANCZOS)  # 调整图像大小以适应窗口
background_photo = ImageTk.PhotoImage(background_image)

# 在背景画布上绘制背景图像
canvas_background.create_image(0, 0, anchor='nw', image=background_photo)
canvas_background.image = background_photo  # 保持对图像的引用

# 加载按钮图片
upload_img = Image.open(r"图标/3.jpg")  # 替换为您的上传按钮图片路径
upload_img = upload_img.resize((100, 50), Image.Resampling.LANCZOS)  # 调整图片大小
upload_img = ImageTk.PhotoImage(upload_img)

start_detection_img = Image.open(r"图标/2.jpg")  # 替换为您的开始检测按钮图片路径
start_detection_img = start_detection_img.resize((100, 50), Image.Resampling.LANCZOS)  # 调整图片大小
start_detection_img = ImageTk.PhotoImage(start_detection_img)

img_intensification_img = Image.open(r"图标/1.jpg")  # 替换为您的图像增强按钮图片路径
img_intensification_img = img_intensification_img.resize((100, 50), Image.Resampling.LANCZOS)  # 调整图片大小
img_intensification_img = ImageTk.PhotoImage(img_intensification_img)

# 创建两个画布区域
canvas_left = tk.Canvas(window, width=224, height=224, bg="#e6f2ff")
canvas_right = tk.Canvas(window, width=224, height=224, bg="#e6f2ff")
# 加载图片
waiting_image = Image.open(r"图标/8.jpg")  # 替换为您的图片路径
detected_image = Image.open(r"图标/7.jpg")  # 替换为您的图片路径
waiting_image = waiting_image.resize((200, 50), Image.Resampling.LANCZOS)
detected_image = detected_image.resize((200, 50), Image.Resampling.LANCZOS)
waiting_photo = ImageTk.PhotoImage(waiting_image)
detected_photo = ImageTk.PhotoImage(detected_image)
# 将两个画布区域放置在主窗口中
canvas_left.grid(row=1, column=0, padx=10, pady=10, sticky='nsew')
canvas_right.grid(row=1, column=1, padx=10, pady=10, sticky='nsew')

# 创建标签
label_waiting_image = tk.Label(window, image=waiting_photo, font=("Arial", 16), bg="#e6f2ff")
label_detected_image = tk.Label(window, image=detected_photo, font=("Arial", 16), bg="#e6f2ff")

# 定位标签
label_waiting_image.grid(row=0, column=0, padx=10, pady=10, sticky='nsew')
label_detected_image.grid(row=0, column=1, padx=10, pady=10, sticky='nsew')

# 设置标签的图片
label_waiting_image.config(image=waiting_photo)
label_detected_image.config(image=detected_photo)


# 创建按钮并放置在主窗口上
button_upload = tk.Button(window, image=upload_img, command=upload_image, relief="flat", borderwidth=0, background='#e6f2ff', activebackground='#e6f2ff')
button_start_detection = tk.Button(window, image=start_detection_img, command=start_detection, relief="flat", borderwidth=0, background='#e6f2ff', activebackground='#e6f2ff')
img_intensification = tk.Button(window, image=img_intensification_img, command=img_inten, relief="flat", borderwidth=0, background='#e6f2ff', activebackground='#e6f2ff')

# 将按钮放置在主窗口上
button_upload.place(x=155,y=495)
button_start_detection.place(x=755,y=495)
img_intensification.place(x=455,y=495)


# 运行主窗口
window.mainloop()

代码实现效果

图像增强效果

这里图像增强本应该导致准确率增强,可能代码实现错误,不过不太重要,只是给大家提供思路

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/674437.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BugKu 哎,就是玩

说明:通过图片隐写找到迷宫压缩包解码密码,然后通过MG游戏得到井字棋游戏解压密码,最后通过完成井字棋得到flag. 打开实验包,解压后可以看到两个文件。 首先要通过TKR.png找到迷宫.zip的解压密码。 打开图片,发现图片…

二叉树创建和遍历

个人主页 :敲上瘾-CSDN博客二叉树介绍:二叉树(详解)-CSDN博客 目录 一、二叉树的创建 二、二叉树的遍历 1.前序遍历 2.中序遍历 3.后序遍历 4.层序遍历 三、相关计算 1.总节点个数计算 2.叶子节点个数计算 3.深度计算 一、二叉树的创建 关于…

24.6.2(动态开点线段树)

星期一: cf edu round 36 E cf传送门 题意:1到n天初始全为工作日,有两种操作,将 l-r 区间变为 工作日/休息日,每次操作后询问剩余总工作日有多少 思路&…

AIGC绘画设计基础——“这是我学一天AI设计后的作品,效率真的高。”

不少小伙伴都在用Midjourney生成图像作品,但对于完整的设计流程却不太熟悉。今天数艺君就跟大家分享一个干货内容:使用Midjourney设计一个动物IP形象! 包含整个项目流程:从项目背景到需求分析,再到出图思路和提示词设计…

Paper Survey——3DGS-SLAM

之前博客对多个3DGS SLAM的工作进行了复现及代码解读 学习笔记之——3DGS-SLAM系列代码解读_gs slam-CSDN博客文章浏览阅读1.9k次,点赞15次,收藏45次。最近对一系列基于3D Gaussian Splatting(3DGS)SLAM的工作的源码进行了测试与…

竞赛 基于视觉的身份证识别系统

0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉的身份证识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-sen…

GNeRF论文理解

文章目录 主要解决什么问题?结构设计以及为什么有效果?个人想法。 主要解决什么问题? 本文主要想要解决的问题是 如何使用uncalibrated的照片来进行Nerf重建。虽然说现在已经有了一些方式可以对相机位姿进行估计和优化,但是他们限…

速通systemverilog

这里写目录标题 一、systemverilog的大部分新语法logicalways_combunique_casepriority casealways_fftypedefstructenumunioninterface 二、实现流水灯三、全加器以及仿真 一、systemverilog的大部分新语法 logic always_comb unique_case priority case case中常量和变量互…

SAP-FICO总账科目案例

1、资产科目 2、负债科目

学习笔记之——2D Gaussian Splatting(2DGS)

3DGS在辐射场重建中取得了巨大的成就,实现高质量的新视图合成和快速渲染。最近新出了3DGS的升级版本,2DGS。写下本博文记录本人学习及测试2DGS的过程,本博文仅为本人学习记录用~ Project WebsiteGithub CodeOriginal paper 目录 原理解读 …

Vue3项目炫酷实战,检测密码强度值

在前端项目开发中,确保用户密码的强度是保护账户安全的重要措施。本文将演示如何使用Vue 3实现一个简单的密码强度检测功能。通过实时反馈,帮助用户创建更安全的密码,从而提升整体系统的安全性。无论您是前端开发新手还是经验丰富的开发者&am…

实验9 静态路由配置

实验9 静态路由配置 一、 原理描述二、 实验目的三、 实验内容四、 实验配置五、 实验步骤 一、 原理描述 网络中的每个路由器都会维护一张路由表或转发表。路由表的表项记录着目的网络信息以及下一跳I 地址。路由表可以手动配置,也可以通过路由算法动态生成。静态…

.NET最新漏洞 | 某SLMS系统存在SQL注入

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…

结合视差补偿与3D数据处理的盲光场图像质量评价

摘要:与传统的2D图像相比,光场图像记录了场景中光线的强度和方向信息,在多媒体技术应用领域中占据着重要的地位。但在光场图像的产生、传输等处理过程中会不可避免地引入失真,影响用户视觉体验,因而需构建有效、准确的…

副业变现:AI技术在多领域创收的七大策略

AI副业变现:开启你的智能创富之路 近年来,人工智能(AI)技术迅猛发展,从大数据分析到自然语言处理,AI正在深刻地改变我们的生活和工作方式。越来越多的人开始利用AI技术发展副业,实现智能创富。…

数字认证携手华为鸿蒙生态,升级智慧办公新体验

5月29日,“千帆竞发启航 共筑鸿蒙生态”鸿蒙原生应用合作仪式在北京成功举办,近40个应用现场官宣启动鸿蒙原生应用开发。数字认证应邀参加,基于HarmonyOS NEXT鸿蒙星河版,数字认证对“掌上信手书”App进行了鸿蒙原生应用开发,为用户提供更安全、更便捷的使用体验。双方此次战略…

软件3班20240603

经典 报错 404 大概率 就是 这图 的 路径 写错i了 package com.yanyu;import javax.servlet.ServletException; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import jav…

基于PCIE X16总线架构的4路QSFP28 100G光纤通道适配器(可实现100%国产化)

板卡概述 PCIE736是一款基于PCIE总线架构的4路QSFP28 100G光纤通道适配器,该板卡具有1个PCIe Gen3x16主机接口、一共4个QSFP28 100G光纤接口,可以实现4路QSFP28 100G光纤的数据实时采集、实时缓存与PCIE高速传输。该板卡采用Xilinx的高性能Virtex Ultra…

Redis-02

redis安装包位置 /opt/redis-7.2.5 redis默认安装路径: 配置文件路径:/usr/local/bin/redisconfig gcc安装位置 /opt/rhredis启动: 在/usr/local/bin目录下输入redis-server redisconfig/redis.confredis-cli -p 6379redis性能测试命令 red…

ES6-02-变量的解构赋值

一、解构赋值的定义 ES6允许按照一定模式从数组和对象中提取值,对变量进行赋值。 二、解构的使用 1、数组解构 2、对象解构 3、方法的解构(用的多) const zhao {name: 赵本上,age: 不知道,xiaopin: function () {console.log(我能演小品);…