模板-初阶

引言:

在C++,我们已经学过了函数重载,这使得同名函数具有多个功能。但是还有一种更省力的方法:采用模板。

本文主要介绍以下内容

1. 泛型编程
2. 函数模板
3. 类模板

1.泛型编程

在将这一部分之前,通过一个故事引入这个知识点。假设这天你干活回家,瘫坐在沙发上,玩起来心爱的古董。当你刚碰到古董的时候,你突然穿越到了古代:三国。诸葛亮刚写了出师表,需要你一晚上誊写出1000份,第二天分发给大家观看,那你该怎么一晚上完成这么繁杂的任务呢?这时候你穿越到了现实世界,带了一个模子回去,模子上刻着字,这样只需要蘸蘸墨水把纸张放上去,便可以高效完成印刷。

可以说泛型编程就是基于这样的思想,我们只需要有一个模板,就可以完成大量的重复操作。而重复操作正是机器擅长的任务,这重复操作就交给了我们的“苦力”--编译器。

这是Swap系列的函数重载,我们如何实现一个通用的交换函数呢?


void Swap(int& left, int& right)
{
 int temp = left;
 left = right;
 right = temp;
}
void Swap(double& left, double& right)
{
 double temp = left;
 left = right;
 right = temp;
}
void Swap(char& left, char& right)
{
 char temp = left;
 left = right;
 right = temp;
}
使用函数重载虽然可以实现,但是有一下几个不好的地方:
1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函
2. 代码的可维护性比较低,一个出错可能所有的重载均出错
那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
这时C++的一个关键字便登场了---template(模板)
如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件 (即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。
模板分为类模板与函数模板。

2. 函数模板

函数模板概念
函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。
针对上面的Swap函数,便可以利用函数模板进行操作。

函数模板格式:

template<typename T1, typename T2,......,typename Tn>           //用的是尖括号     
返回值类型 函数名(参数列表){}

template<class T>
void Swap(T& t1, T& t2)
{
	T tmp = t1;
	t1 = t2;
	t2 = tmp;
}
注意: typename 用来定义模板参数 关键字 也可以使用 class( 切记:不能使用 struct 代替 class)

int main()
{
	int a = 10;
	int b = 20;

	double c = 1.1;
	double d = 2.2;

	cout << "before : a = " << a << " b = " << b << endl;
	cout << "before : c = " << c << " d = " << d << endl;
	Swap(a, b);
	Swap(c, d);

	cout << "after : a = " << a << " b = " << b << endl;
	cout << "after : c = " << c << " d = " << d << endl;

	return 0;
}

这是模板函数的使用,可以正常使用!

需要注意的是:这两个Swap调用的是不同的函数!

函数模板的原理
那么如何解决上面的问题呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界。
函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器。
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。
函数模板的实例化
用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化
隐式实例化:让编译器根据实参推演模板参数的实际类型。
我们使用的Swap函数传参方式就是一种隐式实例化的方式。
让我们分析这两段代码。
代码一:

a c是不同的类型,因此无法对模板的使用。如果我们对c进行强转成int之后,在Swap函数内部进行引用的时候,发生了权限的放大。
这主要是强转的过程发生的。 在强转时,会生成一个临时对象,临时对象具有常性,必须用const修饰的引用才能接收!而Swap函数的参数 接收这个临时对象时,没有用const修饰,所以才会报错,这是出现了权限的放大。
代码二:
这串代码编译成功,主要是因为Add内部的参数被const修饰,因此可以完成引用传参。
当然,代码二也可以采用显式实例化去完成编译。
显式实例化:在函数名后的<>中指定模板参数的实际类型
以下是显式实例化的例子:
告诉模板,统一成int
如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。
对于形参没有T时,一般采用显式实例化。
模板参数的匹配原则
1.一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数
// 专门处理int的加法函数
int Add(int left, int right)
{
 return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
 return left + right;
}
void Test()
{
 Add(1, 2); // 与非模板函数匹配,编译器不需要特化
 Add<int>(1, 2); // 调用编译器特化的Add版本
}

2.对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。

// 专门处理int的加法函数
int Add(int left, int right)
{
 return left + right;
}

// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)    //注意返回类型是T1
{
 return left + right;
}

void Test()
{
 Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
 Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函
数
}
3.模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

3.类模板

当我们实现Stack类的时候,我们用typedef int DataType;处理。但如果我们想同时利用Stack类实例化的对象st1 st2去存储int和double类型的数据,此时就会出现冲突。依次便出现了类模板。
类模板的定义格式
template < class T1 , class T2 , ..., class Tn >
class 类模板名
{
// 类内成员定义
};
这是stack的模板类

template<class T>	//存储的数据类型是T
class Stack
{
public:
	Stack(int capcaity = 4)
		:_capacity(capcaity)
		, _top(0)
		,_array(nullptr)
	{
		_array = new T[_capacity];		//开辟T类型的数组
	}

	void Push(const T& x)    //插入T类型的数据。普通函数别忘了写返回类型!
	{
		_array[_top] = x;
		_top++;
		//容量_capacity不需要++
	}

	~Stack()
	{
		delete[] _array;
		_array = nullptr;
	}
private:
	T* _array;    //类型是T
	int _top;
	int _capacity;
};
类模板的实例化
类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。
这是Stack类的实例化。实例化时必须显式实例化,来告知编译器存储的类型是什么。
需要注意的是 Stack是类名,而Stack<T>才是实例化的类型。我们创建对象,需要用类型 + 对象名才能实例化
类模板的函数不要声明和定义分离到两个文件(.cpp,.h)否则会报错。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/672505.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

语言模型的校准技术:增强概率评估

​ 使用 DALLE-3 模型生成的图像 目录 一、说明 二、为什么校准对 LLM 模型至关重要 三、校准 LLM 概率的挑战 四、LLM 的高级校准方法 4.1 语言置信度 4.2 增强语言自信的先进技术 4.3 基于自一致性的置信度 4.4 基于 Logit 的方法 五、代理模型或微调方法 5.1 使用代…

Python 网络爬虫:深入解析 Scrapy

大家好&#xff0c;在当今数字化时代&#xff0c;获取和分析网络数据是许多项目的关键步骤。从市场竞争情报到学术研究&#xff0c;网络数据的重要性越来越被人们所认识和重视。然而&#xff0c;手动获取和处理大量的网络数据是一项繁琐且耗时的任务。幸运的是&#xff0c;Pyth…

Winform ListView 嵌入组合框、布尔、图片等复杂控件

一、Winform ListView 显示复杂控件示例 以下展示了两种实现思路方案。最后修改日期 2024-05 surfsky 1.1 方案一&#xff1a;ListView 结合组合框进行模拟编辑 基本思路 在界面上放置一个lisview和一个combobox&#xff0c;combobox平时是隐藏的。点击listview&#xff0c…

机械设计手册第一册:公差

形位公差的标注&#xff1a; 形位公差框格中&#xff0c;不仅要表达形位公差的特征项目、基准代号和其他符号&#xff0c;还要正确给出公差带的大小、形状等内容。 1.形位公差框格&#xff1a; 形位公差框格由两个框格或多个格框组成&#xff0c;框格中的主要内容从左到右按…

mysql中基于规则的优化

大家好。我们在平时开发的过程中可能会写一些执行起来十分耗费性能的语句。当MySQL遇到这种sql时会依据一些规则&#xff0c;竭尽全力的把这个很糟糕的语句转换成某种可以比较高效执行的形式&#xff0c;这个过程被称作查询重写&#xff0c;今天我们就来聊一下mysql在查询重写时…

FreeRTOS基础(八):FreeRTOS 时间管理

前面我们用了FreeRTOS中的延时函数&#xff0c;本篇博客就来探讨FreeRTOS中的延时函数&#xff0c;看看他们是如何发挥作用的。当我们在裸机开发中调用delay_ms()函数时&#xff0c;我们的处理器将不处理任何事&#xff0c;造成处理器资源的浪费。 为此&#xff0c;为了提高CPU…

ChatTTS改良版 - 高度逼真的人类情感文本生成语音工具(TTS)本地一键整合包下

先介绍下ChatTTS 和之前发布的 Fish Speech 类似&#xff0c;都是免费开源的文本生成语音的AI软件&#xff0c;但不同的是&#xff0c;ChatTTS测试下来&#xff0c;对于人类情感语调的模仿&#xff0c;应该是目前开源项目做的最好的&#xff0c;是一款高度接近人类情感、音色、…

计算机工作原理(程序猿必备的计算机常识)

目录 一、计算机工作原理1.冯诺依曼体系2. CPU执行指令的过程 二、操作系统三、进程的概念四、进程的管理五、进程的调度 一、计算机工作原理 1.冯诺依曼体系 现在的计算机大多都遵循冯诺依曼体系结构 CPU&#xff1a; 中央处理器&#xff0c;进行算术运算和逻辑判断&#…

百度文心一言API批量多线程写文章软件-key免费无限写

百度文心大模型的两款主力模型ENIRE Speed、ENIRE Lite全面免费&#xff0c;即刻生效。 百度文心大模型的两款主力模型 这意味着&#xff0c;大模型已进入免费时代&#xff01; 据了解&#xff0c;这两款大模型发布于今年 3 月&#xff0c;支持 8K 和 128k 上下文长度。 ER…

赢销侠的秘密武器:如何提升客户满意度?

在竞争激烈的商业战场上&#xff0c;客户满意度是企业能否长盛不衰的关键。它如同一面镜子&#xff0c;映照出企业的服务质量和产品实力。那么&#xff0c;赢销侠们是如何运用秘密武器来提升客户满意度的呢&#xff1f;本文将深入探讨这一课题&#xff0c;并揭示背后的策略与智…

灾备方案中虚拟化平台元数据备份技术应用

首先需要介绍下元数据是什么&#xff1f; 元数据&#xff08;Metadata&#xff09;是一个重要的概念&#xff0c;它描述了数据的数据&#xff0c;也就是说&#xff0c;元数据提供了关于数据属性的信息。这些属性可能包括数据的存储位置、历史数据、资源查找、文件记录等。 元…

LabVIEW与欧陆温控表通讯的实现与应用:厂商软件与自主开发的优缺点

本文探讨了LabVIEW与欧陆温控表通讯的具体实现方法&#xff0c;并对比了使用厂商提供的软件与自行开发LabVIEW程序的优缺点。通过综合分析&#xff0c;帮助用户在实际应用中选择最适合的方案&#xff0c;实现高效、灵活的温控系统。 LabVIEW与欧陆温控表通讯的实现与应用&#…

基于Jenkins+Kubernetes+GitLab+Harbor构建CICD平台

1. 实验环境 1.1 k8s环境 1&#xff09;Kubernetes 集群版本是 1.20.6 2&#xff09;k8s控制节点&#xff1a; IP&#xff1a;192.168.140.130 主机名&#xff1a;k8s-master 配置&#xff1a;4C6G 3&#xff09;k8s工作节点 节点1&#xff1a; IP&#xff1a;192.1…

day-37 最大正方形

思路 动态规划&#xff0c;这题主要得弄明白状态转换方程&#xff0c;dp[i][j]表示以&#xff08;i,j&#xff09;为右下角的最大正方形 解题方法 1.首先将第一行和第一列初始化&#xff0c;当对应位置的matrix为’0’时&#xff0c;dp数组对应位置也为零&#xff0c;否则为1 …

上位机图像处理和嵌入式模块部署(f407 mcu中fatfs中间件使用)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们已经实现了spi norflash的驱动&#xff0c;理论上这已经可以实现数据的持久化保存了。为什么还需要一个文件系统呢&#xff1f;主要原因还…

HTML静态网页成品作业(HTML+CSS)——家乡常德介绍网页(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…

【Qt 学习笔记】Qt窗口 | 对话框 | Qt对话框的分类及介绍

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Qt窗口 | 对话框 | 模态对话框 文章编号&#xff1a;Qt 学习笔记 / 51…

API开发秘籍:揭秘Swagger与Spring REST Docs的文档自动化神技

在这个数字化时代&#xff0c;如何让你的业务像外卖一样快速送达顾客手中&#xff1f;本文将带你走进Spring Boot的世界&#xff0c;学习如何利用RESTful API构建一个高效、直观的“外卖帝国”。从基础的REST架构风格&#xff0c;到Spring MVC的魔力&#xff0c;再到Swagger和S…

解决kettle界面右上角的connect消失——且使用admin登录不上Kettle资源库

一、问题描述 1.1、Kettle界面右上角的connect消失了 当我们配置Kettle界面的资源库(Other Repositories)内容后,Kettle界面右上角的connect消失了;如下图所示: 1.2、使用默认的账户【admin】和密码【admin】登录不上kettle资源库 当我们切换到我们配置的数据库使用超管账…

排序-希尔排序

介绍 希尔排序属于那种没有了解过的直接看代码一脸懵逼的&#xff0c; 所以同学们尽量不要直接看代码&#xff0c;仔细阅读本篇博客内容。 插入排序本来算是一个低效排序&#xff0c; 一次只可以挪动一个数据&#xff0c; 但是&#xff0c;它的强来了&#xff01;&#xff01…